Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Mater ; 16(6)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34412045

RESUMEN

Surface functionalization of polymers aims to introduce novel properties that favor bioactive responses. We have investigated the possibility of surface functionalization of polyethylene terephthalate (PET) sheets by the combination of laser ablation with hot embossing and the application of such techniques in the field of stem cell research. We investigated the response of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to topography in the low micrometer range. HiPSC-CMs are expected to offer new therapeutic tools for myocardial replacement or regeneration after an infarct or other causes of cardiac tissue loss. However, hiPSC-CMs are phenotypically immature compared to myocytes in the adult myocardium, hampering their clinical application. We aimed to develop and test a high-throughput technique for surface structuring that would improve hiPSC-CMs structural maturation. We used laser ablation with a ps-laser source in combination with nanoimprint lithography to fabricate large areas of homogeneous micron- to submicron line-like pattern with a spatial period of 3 µm on the PET surface. We evaluated cell morphology, alignment, sarcomeric myofibrils assembly, and calcium transients to evaluate phenotypic changes associated with culturing hiPSC-CMs on functionalized PET. Surface functionalization through hot embossing was able to generate, at low cost, low micrometer features on the PET surface that influenced the hiPSC-CMs phenotype, suggesting improved structural and functional maturation. This technique may be relevant for high-throughput technologies that require conditioning of hiPSC-CMs and may be useful for the production of these cells for drug screening and disease modeling applications with lower costs.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Nanotecnología/métodos , Células Cultivadas , Ensayos Analíticos de Alto Rendimiento , Humanos , Tereftalatos Polietilenos/química , Propiedades de Superficie
2.
Langmuir ; 25(16): 9624-8, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19585964

RESUMEN

The fabrication of advanced architectures in poly(methylmethacrylate-co-styrene) (PMMA-S) copolymers (ranging from 12 to 66% mol content of methylmethacrylate) using direct laser interference patterning is reported. For all copolymer compositions, two different regimes were observed. At low laser intensities, the irradiated surfaces swell up due to the formation of microbubbles that result from the degradation of the methylmetacrylate (MMA) component. While laser ablation produces concave holes, the swelling process permits fabrication of convex hemispherical dots. At higher intensities the bubbles release from the surface forming a periodic micropored structure. In addition, the laser fluence necessary to swell the polymeric surface (swelling threshold) does not depend on polymer composition, while the ablation threshold, which determines the transition to the periodic micropored structure, strongly depends on the MMA content. This observation can be explained by the mechanical and chemical properties of the copolymer. The method provides a unique way to produce periodical structures protruding from the polymer surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA