Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 13(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35457810

RESUMEN

With multi-foci laser cutting technology for sapphire wafer separation, the entire cross-section is generally scanned with single or multiple passes. This investigation proposes a new separation technique through partial thickness scanning. The energy effectivity and efficiency of the picosecond laser were enhanced through a two-zone partial thickness scanning by exploiting the internal reflection at the rough exit surface. Each zone spanned only one-third thickness of the cross-section, and only two out of three zones were scanned consecutively. A laser beam of 0.57 W and 50 kHz pulse repetition rate was split into 9 foci, each with a 2.20 µm calculated focused spot diameter. By only scanning the top two-thirds sample thickness, first its middle section then upper section, a cleavable sample could result. This was achieved with the lowest energy deposition at the fastest scanning speed of 10 mm/s investigated. Although with partial thickness scanning only, counter intuitively, the cleaved sample had a previously unattained uniform roughened sidewall profile over the entire thickness. This is a desirable outcome in LED manufacturing. As such, this proposed scheme could attain a cleavable sample with the desired uniformly roughened sidewall profile with less energy usage and faster scanning speed.

2.
Micromachines (Basel) ; 12(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34832740

RESUMEN

The multi-foci division of through thickness nonlinear pulse energy absorption on ultrashort pulse laser singulation of single side polished sapphire wafers has been investigated. Firstly, it disclosed the enhancement of energy absorption by the total internal reflection of the laser beam exiting from an unpolished rough surface. Secondly, by optimizing energy distribution between foci and their proximity, favorable multi-foci energy absorption was induced. Lastly, for effective nonlinear energy absorption for wafer separation, it highlighted the importance of high laser pulse energy fluence at low pulse repetition rates with optimized energy distribution, and the inadequacy of increasing energy deposition through reducing scanning speed alone. This study concluded that for effective wafer separation, despite the lower pulse energy per focus, energy should be divided over more foci with closer spatial proximity. Once the power density per pulse per focus reached a threshold in the order of 1012 W/cm2, with approximately 15 µm between two adjacent foci, wafer could be separated with foci evenly distributed over the entire wafer thickness. When the foci spacing reduced to 5 µm, wafer separation could be achieved with pulse energy concentrated only at foci distributed over only the upper or middle one-third wafer thickness.

3.
Micromachines (Basel) ; 12(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34577675

RESUMEN

Electroosmotic flow (EOF) involving displacement of multiple fluids is employed in micro-/nanofluidic applications. There are existing investigations on EOF hysteresis, i.e., flow direction-dependent behavior. However, none so far have studied the solution pair system of dissimilar ionic species with substantial pH difference. They exhibit complicated hysteretic phenomena. In this study, we investigate the EOF of sodium bicarbonate (NaHCO3, alkaline) and sodium chloride (NaCl, slightly acidic) solution pair via current monitoring technique. A developed slip velocity model with a modified wall condition is implemented with finite element simulations. Quantitative agreements between experimental and simulation results are obtained. Concentration evolutions of NaHCO3-NaCl follow the dissimilar anion species system. When NaCl displaces NaHCO3, EOF reduces due to the displacement of NaHCO3 with high pH (high absolute zeta potential). Consequently, NaCl is not fully displaced into the microchannel. When NaHCO3 displaces NaCl, NaHCO3 cannot displace into the microchannel as NaCl with low pH (low absolute zeta potential) produces slow EOF. These behaviors are independent of the applied electric field. However, complete displacement tends to be achieved by lowering the NaCl concentration, i.e., increasing its zeta potential. In contrast, the NaHCO3 concentration has little impact on the displacement process. These findings enhance the understanding of EOF involving solutions with dissimilar pH and ion species.

4.
Nat Commun ; 12(1): 3146, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035283

RESUMEN

Despite its advantages of scalable process and cost-effectiveness, nanoimprinting faces challenges with imprinting hard materials (e.g., crystalline metals) at low/room temperatures, and with fabricating complex nanostructures rapidly (e.g., heterojunctions of metal and oxide). Herein, we report a room temperature ultrasonic nanoimprinting technique (named nanojackhammer) to address these challenges. Nanojackhammer capitalizes on the concentration of ultrasonic energy flow at nanoscale to shape bulk materials into nanostructures. Working at room temperature, nanojackhammer allows rapid fabrication of complex multi-compositional nanostructures made of virtually all solid materials regardless of their ductility, hardness, reactivity and melting points. Atomistic simulations reveal a unique alternating dislocation generation and recovery mechanism that significantly reduces the imprinting force under ultrasonic cyclic loading. As a proof-of-concept, a metal-oxide-metal plasmonic nanostructure with built-in nanogap is rapidly fabricated and employed for biosensing. As a fast, scalable, and cost-effective nanotechnology, nanojackhammer will enable various unique applications of complex nanostructures in optoelectronics, biosensing, catalysis and beyond.

5.
Micromachines (Basel) ; 12(3)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668402

RESUMEN

We conducted a laser parameter study on CO2 laser induced electrical conductivity on a polyimide film. The induced electrical conductivity was found to occur dominantly at the center of the scanning line instead of uniformly across the whole line width. MicroRaman examination revealed that the conductivity was mainly a result of the multi-layers (4-5) of graphene structure induced at the laser irradiation line center. The graphene morphology at the line center appeared as thin wall porous structures together with nano level fiber structures. With sufficient energy dose per unit length and laser power, this surface modification for electrical conductivity was independent of laser pulse frequency but was instead determined by the average laser power. High electrical conductivity could be achieved by a single scan of laser beam at a sufficiently high-power level. To achieve high conductivity, it was not efficient nor effective to utilize a laser at low power but compensating it with a slower scanning speed or having multiple scans. The electrical resistance over a 10 mm scanned length decreased significantly from a few hundred Ohms to 30 Ohms when energy dose per unit length increased from 0.16 J/mm to 1.0 J/mm, i.e., the laser power increased from 5.0 W to 24 W with corresponding power density of 3.44 × 10 W/cm2 to 16.54 W/cm2 respectively at a speed of 12.5 mm/s for a single pass scan. In contrast, power below 5 W at speeds exceeding 22.5 mm/s resulted in a non-conductive open loop.

6.
Micromachines (Basel) ; 11(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138301

RESUMEN

Electroosmotic flow (EOF) is fluid flow induced by an applied electric field, which has been widely employed in various micro-/nanofluidic applications. Past investigations have revealed that the presence of nanostructures in microchannel reduces EOF. Hitherto, the angle-dependent behavior of nanoline structures on EOF has not yet been studied in detail and its understanding is lacking. Numerical analyses of the effect of nanoline orientation angle θ on EOF to reveal the associated mechanisms were conducted in this investigation. When θ increases from 5° to 90° (from parallel to perpendicular to the flow direction), the average EOF velocity decreases exponentially due to the increase in distortion of the applied electric field distribution at the structured surface, as a result of the increased apparent nanolines per unit microchannel length. With increasing nanoline width W, the decrease of average EOF velocity is fairly linear, attributed to the simultaneous narrowing of nanoline ridge (high local fluid velocity region). While increasing nanoline depth D results in a monotonic decrease of the average EOF velocity. This reduction stabilizes for aspect ratio D/W > 0.5 as the electric field distribution distortion within the nanoline trench remains nearly constant. This investigation reveals that the effects on EOF of nanolines, and by extrapolation for any nanostructures, may be directly attributed to their effects on the distortion of the applied electric field distribution within a microchannel.

7.
Micromachines (Basel) ; 10(2)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736476

RESUMEN

Viscous liquid flow in micro-channels is typically laminar because of the low Reynolds number constraint. However, by introducing elasticity into the fluids, the flow behavior could change drastically to become turbulent; this elasticity can be realized by dissolving small quantities of polymer molecules into an aqueous solvent. Our recent investigation has directly visualized the extension and relaxation of these polymer molecules in an aqueous solution. This elastic-driven phenomenon is known as 'elastic turbulence'. Hitherto, existing studies on elastic flow instability are mostly limited to single-stream flows, and a comprehensive statistical analysis of a multi-stream elastic turbulent micro-channel flow is needed to provide additional physical understanding. Here, we investigate the flow field characteristics of elastic turbulence in a 3-stream contraction-expansion micro-channel flow. By applying statistical analyses and flow visualization tools, we show that the flow field bares many similarities to that of inertia-driven turbulence. More interestingly, we observed regions with two different types of power-law dependence in the velocity power spectra at high frequencies. This is a typical characteristic of two-dimensional turbulence and has hitherto not been reported for elastic turbulent micro-channel flows.

8.
Adv Healthc Mater ; 8(6): e1801022, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30511823

RESUMEN

Microarrays are widely used in high-throughput analysis of DNA, protein, and small molecules. However, the majority of microarray assays need improved assay speed and sensitivity due to the slow molecular diffusion from bulk solutions to probe surfaces. Here, a new class of magnetic nanomixers in DNA and protein microarray assays is reported to eliminate the diffusion constraint through dynamic mixing. It is demonstrated that the dynamic nanomixers can improve the assay kinetics at least by a factor of 4 and 2 for DNA and protein microarray assays, respectively. By using the dynamic nanomixers, the sensitivities of detecting Escherichia coli O157:H7 DNA and prostate specific antigen increase by more than four-fold. The dynamic mixing also greatly reduces the spot-to-spot variation to below 10% across a broad concentration range, providing more accurate assay results. In comparison with existing methods, this magnetic nanomixer-based approach offers rapid turnaround, improved sensitivity, good accuracy, low cost, simple operation, and excellent compatibility with commercial microarrays.


Asunto(s)
Magnetismo , Análisis por Micromatrices/métodos , Nanoestructuras/química , ADN Bacteriano/análisis , Difusión , Escherichia coli O157/genética , Humanos , Cinética , Antígeno Prostático Específico/análisis
9.
Micromachines (Basel) ; 9(5)2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-30424162

RESUMEN

Although electroosmotic flow (EOF) has been applied to drive fluid flow in microfluidic chips, some of the phenomena associated with it can adversely affect the performance of certain applications such as electrophoresis and ion preconcentration. To minimize the undesirable effects, EOF can be suppressed by polymer coatings or introduction of nanostructures. In this work, we presented a novel technique that employs the Dry Etching, Electroplating and Molding (DEEMO) process along with reactive ion etching (RIE), to fabricate microchannel with black silicon nanostructures (prolate hemispheroid-like structures). The effect of black silicon nanostructures on EOF was examined experimentally by current monitoring method, and numerically by finite element simulations. The experimental results showed that the EOF velocity was reduced by 13 ± 7%, which is reasonably close to the simulation results that predict a reduction of approximately 8%. EOF reduction is caused by the distortion of local electric field at the nanostructured surface. Numerical simulations show that the EOF velocity decreases with increasing nanostructure height or decreasing diameter. This reveals the potential of tuning the etching process parameters to generate nanostructures for better EOF suppression. The outcome of this investigation enhances the fundamental understanding of EOF behavior, with implications on the precise EOF control in devices utilizing nanostructured surfaces for chemical and biological analyses.

10.
Nat Commun ; 9(1): 1743, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717124

RESUMEN

Microfluidic biochips hold great potential for liquid analysis in biomedical research and clinical diagnosis. However, the lack of integrated on-chip liquid mixing, bioseparation and signal transduction presents a major challenge in achieving rapid, ultrasensitive bioanalysis in simple microfluidic configurations. Here we report magnetic nanochain integrated microfluidic chip built upon the synergistic functions of the nanochains as nanoscale stir bars for rapid liquid mixing and as capturing agents for specific bioseparation. The use of magnetic nanochains enables a simple planar design of the microchip consisting of flat channels free of common built-in components, such as liquid mixers and surface-anchored sensing elements. The microfluidic assay, using surface-enhanced Raman scattering nanoprobes for signal transduction, allows for streamlined parallel analysis of multiple specimens with greatly improved assay kinetics and delivers ultrasensitive identification and quantification of a panel of cancer protein biomarkers and bacterial species in 1 µl of body fluids within 8 min.


Asunto(s)
Bacterias/metabolismo , Biomarcadores de Tumor/sangre , Proteínas Sanguíneas/análisis , Magnetismo , Microfluídica/instrumentación , Nanoestructuras , Saliva/microbiología , Bacterias/aislamiento & purificación , Líquidos Corporales/química , Humanos , Límite de Detección , Neoplasias/sangre , Espectrometría Raman
11.
Anal Chem ; 89(17): 9394-9399, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28737036

RESUMEN

Electroosmotic flow (EOF) or electro-osmosis has been shown to exhibit a hysteresis effect under displacement flow involving two solutions with different concentrations, i.e. the flow velocity for a high-concentration solution displacing a low-concentration solution is faster than the flow velocity in the reverse direction involving the same solution pair. On the basis of our recent numerical analysis, a pH change initiated at the interface between the two solutions has been hypothesized as the cause for the observed anomalies. We report the first experimental evidence of EOF hysteresis induced by a pH change in the bulk solution. pH-sensitive dye was employed to quantify the pH changes in the microchannel during EOF. The electric-field gradient across the boundary of two solutions generates an accumulation or depletion of a minority of pH-governing ions such as hydronium (H3O+) ions, thus inducing pH variations across the microchannel. When a high-concentration solution displaced a lower-concentration solution, a pH increase was observed, while the flow in the reverse direction induced a decrease in pH. This effect causes significant changes to the zeta potential and flow velocity. The experimental results show good quantitative agreement with numerical simulations. This work presents the experimental proof which validates the hypothesis of a pH change during electroomostic flow hysteresis as predicted by numerical analysis. The understanding of pH changes during EOF is crucial for accurate flow manipulation in microfluidic devices and maintenance of constant pH in biological and chemical systems under an electric field.

12.
Nanotechnology ; 28(25): 255303, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28510536

RESUMEN

Electroosmotic flow (EOF) is an electric-field-induced fluid flow that has numerous micro-/nanofluidic applications, ranging from pumping to chemical and biomedical analyses. Nanoscale networks/structures are often integrated in microchannels for a broad range of applications, such as electrophoretic separation of biomolecules, high reaction efficiency catalytic microreactors, and enhancement of heat transfer and sensing. Their introduction has been known to reduce EOF. Hitherto, a proper study on the effect of nanostructures orientation on EOF in a microfluidic channel is yet to be carried out. In this investigation, we present a novel fabrication method for nanostructure designs that possess maximum orientation difference, i.e. parallel versus perpendicular indented nanolines, to examine the effect of nanostructures orientation on EOF. It consists of four phases: fabrication of silicon master, creation of mold insert via electroplating, injection molding with cyclic olefin copolymer, and thermal bonding and integration of practical inlet/outlet ports. The effect of nanostructures orientation on EOF was studied experimentally by current monitoring method. The experimental results show that nanolines which are perpendicular to the microchannel reduce the EOF velocity significantly (approximately 20%). This flow velocity reduction is due to the distortion of local electric field by the perpendicular nanolines at the nanostructured surface as demonstrated by finite element simulation. In contrast, nanolines which are parallel to the microchannel have no effect on EOF, as it can be deduced that the parallel nanolines do not distort the local electric field. The outcomes of this investigation contribute to the precise control of EOF in lab-on-chip devices, and fundamental understanding of EOF in devices which utilize nanostructured surfaces for chemical and biological analyses.

13.
Anal Chem ; 88(16): 8064-73, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27426052

RESUMEN

Electroosmotic flow (EOF) with two or more fluids is often encountered in various microfluidic applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during displacement flow of solutions with dissimilar anion species. In this investigation, EOF of dissimilar anionic solutions was studied experimentally through the current monitoring method and numerically through finite element simulations. As opposed to other conventional displacement flows, EOF involving dissimilar anionic solutions exhibits counterintuitive behavior, whereby the current-time curve does not reach the steady-state value of the displacing electrolyte. Two distinct mechanics have been identified as the causes for this observation: (a) ion concentration adjustment when the displacing anions migrate upstream against EOF due to competition between the gradients of electromigrative and convective fluxes and (b) ion concentration readjustment induced by the static diffusive interfacial region between the dissimilar fluids which can only be propagated throughout the entire microchannel with the presence of EOF. The resultant ion distributions lead to the flow rate to be directional-dependent, indicating that the flow conditions are asymmetric between these two different flow directions. The outcomes of this investigation contribute to the in-depth understanding of flow behavior in microfluidic systems involving inhomogeneous fluids, particularly dissimilar anionic solutions. The understanding of EOF hysteresis is fundamentally important for the accurate prediction of analytes transport in microfluidic devices under EOF.

14.
Sci Rep ; 6: 22329, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26923197

RESUMEN

Electro-osmotic flow, the driving of fluid at nano- or micro-scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field.

15.
NPJ Biofilms Microbiomes ; 2: 16023, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28721252

RESUMEN

Life of bacteria is governed by the physical dimensions of life in microscales, which is dominated by fast diffusion and flow at low Reynolds numbers. Microbial biofilms are structurally and functionally heterogeneous and their development is suggested to be interactively related to their microenvironments. In this study, we were guided by the challenging requirements of precise tools and engineered procedures to achieve reproducible experiments at high spatial and temporal resolutions. Here, we developed a robust precise engineering approach allowing for the quantification of real-time, high-content imaging of biofilm behaviour under well-controlled flow conditions. Through the merging of engineering and microbial ecology, we present a rigorous methodology to quantify biofilm development at resolutions of single micrometre and single minute, using a newly developed flow cell. We designed and fabricated a high-precision flow cell to create defined and reproducible flow conditions. We applied high-content confocal laser scanning microscopy and developed image quantification using a model biofilm of a defined opportunistic strain, Pseudomonas putida OUS82. We observed complex patterns in the early events of biofilm formation, which were followed by total dispersal. These patterns were closely related to the flow conditions. These biofilm behavioural phenomena were found to be highly reproducible, despite the heterogeneous nature of biofilm.

16.
Sci Rep ; 5: 16633, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26563615

RESUMEN

In micro-channels, the flow of viscous liquids e.g. water, is laminar due to the low Reynolds number in miniaturized dimensions. An aqueous solution becomes viscoelastic with a minute amount of polymer additives; its flow behavior can become drastically different and turbulent. However, the molecules are typically invisible. Here we have developed a novel visualization technique to examine the extension and relaxation of polymer molecules at high flow velocities in a viscoelastic turbulent flow. Using high speed videography to observe the fluorescein labeled molecules, we show that viscoelastic turbulence is caused by the sporadic, non-uniform release of energy by the polymer molecules. This developed technique allows the examination of a viscoelastic liquid at the molecular level, and demonstrates the inhomogeneity of viscoelastic liquids as a result of molecular aggregation. It paves the way for a deeper understanding of viscoelastic turbulence, and could provide some insights on the high Weissenberg number problem. In addition, the technique may serve as a useful tool for the investigations of polymer drag reduction.

17.
Biomicrofluidics ; 9(2): 024113, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25945139

RESUMEN

Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species.

18.
Nanomaterials (Basel) ; 5(3): 1442-1453, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-28347074

RESUMEN

The effect of laser irradiation on surface wettability of cyclic olefin polymer (COP) was investigated. Under different laser parameters, a superhydrophilic or a superhydrophobic COP surface with a water contact angle (WCA) of almost 0° or 163°, respectively, could be achieved by direct femtosecond laser irradiation. The laser power deposition rate (PDR) was found to be a key factor on the wettability of the laser-treated COP surface. The surface roughness and surface chemistry of the laser-irradiated samples were characterized by surface profilometer and X-ray photoelectron spectroscopy, respectively; they were found to be responsible for the changes of the laser-induced surface wettability. The mechanisms involved in the laser surface wettability modification process were discussed.

19.
ACS Appl Mater Interfaces ; 6(6): 4011-6, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24571607

RESUMEN

Appropriate control of substrate surface properties prior to inkjet printing could be employed to improve the printing quality of fine resolution structures. In this paper, novel methods to fabricate patterned surfaces with a combination of hydrophilic and hydrophobic properties are investigated. The results of inkjet printing of PEDOT/PSS conductive ink on these modified surfaces are presented. Selective wetting was achieved via a two-step hydrophilic-hydrophobic coating of 3-aminopropyl trimethoxysilane (APTMS) and 3M electronic grade chemical respectively on PET surfaces; this was followed by a selective hydrophilic treatment (either atmospheric O2/Ar plasma or UV/ozone surface treatment) with the aid of a Nickel stencil. Hydrophobic regions with water contact angle (WCA) of 105° and superhydrophilic regions with WCA <5° can be achieved on a single surface. During inkjet printing of the treated surfaces, PEDOT/PSS ink spread spontaneously along the hydrophilic areas while avoiding the hydrophobic regions. Fine features smaller than the inkjet droplet size (approximately 55 µm in diameter) can be successfully printed on the patterned surface with high wettability contrast.

20.
Anal Chem ; 84(15): 6463-70, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22881399

RESUMEN

The study presents a dielectrophoretic cell separation method via three-dimensional (3D) nonuniform electric fields generated by employing a periodic array of discrete but locally asymmetric triangular bottom microelectrodes and a continuous top electrode. Traversing through the microelectrodes, heterogeneous cells are electrically polarized to experience different strengths of positive dielectrophoretic forces, in response to the 3D nonuniform electric fields. The cells that experience stronger positive dielectrophoresis are streamed further in the perpendicular direction to the fluid flow, leaving the cells that experience weak positive dielectrophoresis, which continue to traverse the microelectrode array essentially along the laminar flow streamlines. The proposed method has achieved 87.3% pure live cells harvesting efficiency from a live/dead NIH-3T3 cells mixture, and separation of MG-63 cells from erythrocytes with a separation efficiency of 82.8%. The demonstrated cell separation shows promising applications of the DEP separator for cell separation in a continuous mode.


Asunto(s)
Separación Celular , Animales , Línea Celular Tumoral , Electroforesis por Microchip/instrumentación , Eritrocitos/citología , Humanos , Ratones , Análisis por Micromatrices , Microelectrodos , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA