Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fungal Genet Biol ; 175: 103925, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244012

RESUMEN

Phyllosticta citricarpa is an important citrus-pathogen and a quarantine organism in the European Union. Its recently described relative, P. paracitricarpa, is very closely related and not listed as a quarantine organism. P. paracitricarpa is very difficult to distinguish from P. citricarpa, since its morphological features overlap and the barcoding gene sequences that were originally used to delimit them as distinct species have a low number of species-specific polymorphisms that have subsequently been shown to overlap between the two clades. Therefore, we performed extensive genomic analyses to determine whether the genetic variation between P. citricarpa and P. paracitricarpa strains should be considered to represent infraspecific variation within P. citricarpa, or whether it is indicative of distinct species. Using a phylogenomic analysis with 3,000 single copy ortholog genes and whole-genome comparisons, we determined that the variation between P. citricarpa and P. paracitricarpa can be considered as infraspecies variation within P. citricarpa. We also determined the level of variation in mitochondrial assemblies of several Phyllosticta species and concluded there are only minimal differences between the assemblies of P. citricarpa and P. paracitricarpa. Thus, using several orthogonal approaches, we here demonstrate that variation within the nuclear and mitochondrial genomes of other Phyllosticta species is larger than variation between genomes obtained from P. citricarpa and P. paracitricarpa strains. Thus, P. citricarpa and P. paracitricarpa should be considered as conspecific.

2.
Commun Biol ; 7(1): 1124, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266695

RESUMEN

Thermophily is a trait scattered across the fungal tree of life, with its highest prevalence within three fungal families (Chaetomiaceae, Thermoascaceae, and Trichocomaceae), as well as some members of the phylum Mucoromycota. We examined 37 thermophilic and thermotolerant species and 42 mesophilic species for this study and identified thermophily as the ancestral state of all three prominent families of thermophilic fungi. Thermophilic fungal genomes were found to encode various thermostable enzymes, including carbohydrate-active enzymes such as endoxylanases, which are useful for many industrial applications. At the same time, the overall gene counts, especially in gene families responsible for microbial defense such as secondary metabolism, are reduced in thermophiles compared to mesophiles. We also found a reduction in the core genome size of thermophiles in both the Chaetomiaceae family and the Eurotiomycetes class. The Gene Ontology terms lost in thermophilic fungi include primary metabolism, transporters, UV response, and O-methyltransferases. Comparative genomics analysis also revealed higher GC content in the third base of codons (GC3) and a lower effective number of codons in fungal thermophiles than in both thermotolerant and mesophilic fungi. Furthermore, using the Support Vector Machine classifier, we identified several Pfam domains capable of discriminating between genomes of thermophiles and mesophiles with 94% accuracy. Using AlphaFold2 to predict protein structures of endoxylanases (GH10), we built a similarity network based on the structures. We found that the number of disulfide bonds appears important for protein structure, and the network clusters based on protein structures correlate with the optimal activity temperature. Thus, comparative genomics offers new insights into the biology, adaptation, and evolutionary history of thermophilic fungi while providing a parts list for bioengineering applications.


Asunto(s)
Evolución Molecular , Genoma Fúngico , Genómica/métodos , Filogenia , Hongos/genética , Hongos/clasificación , Adaptación Fisiológica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
Sci Data ; 11(1): 966, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231974

RESUMEN

The North Temperate Lakes Long-Term Ecological Research (NTL-LTER) program has been extensively used to improve understanding of how aquatic ecosystems respond to environmental stressors, climate fluctuations, and human activities. Here, we report on the metagenomes of samples collected between 2000 and 2019 from Lake Mendota, a freshwater eutrophic lake within the NTL-LTER site. We utilized the distributed metagenome assembler MetaHipMer to coassemble over 10 terabases (Tbp) of data from 471 individual Illumina-sequenced metagenomes. A total of 95,523,664 contigs were assembled and binned to generate 1,894 non-redundant metagenome-assembled genomes (MAGs) with ≥50% completeness and ≤10% contamination. Phylogenomic analysis revealed that the MAGs were nearly exclusively bacterial, dominated by Pseudomonadota (Proteobacteria, N = 623) and Bacteroidota (N = 321). Nine eukaryotic MAGs were identified by eukCC with six assigned to the phylum Chlorophyta. Additionally, 6,350 high-quality viral sequences were identified by geNomad with the majority classified in the phylum Uroviricota. This expansive coassembled metagenomic dataset provides an unprecedented foundation to advance understanding of microbial communities in freshwater ecosystems and explore temporal ecosystem dynamics.


Asunto(s)
Lagos , Metagenoma , Bacterias/genética , Bacterias/clasificación , Lagos/microbiología , Metagenómica , Filogenia
4.
J Fungi (Basel) ; 10(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057392

RESUMEN

Aspergillus terreus has attracted interest due to its application in industrial biotechnology, particularly for the production of itaconic acid and bioactive secondary metabolites. As related species also seem to possess a prosperous secondary metabolism, they are of high interest for genome mining and exploitation. Here, we present draft genome sequences for six species from Aspergillus section Terrei and one species from Aspergillus section Nidulantes. Whole-genome phylogeny confirmed that section Terrei is monophyletic. Genome analyses identified between 70 and 108 key secondary metabolism genes in each of the genomes of section Terrei, the highest rate found in the genus Aspergillus so far. The respective enzymes fall into 167 distinct families with most of them corresponding to potentially unique compounds or compound families. Moreover, 53% of the families were only found in a single species, which supports the suitability of species from section Terrei for further genome mining. Intriguingly, this analysis, combined with heterologous gene expression and metabolite identification, suggested that species from section Terrei use a strategy for UV protection different to other species from the genus Aspergillus. Section Terrei contains a complete plant polysaccharide degrading potential and an even higher cellulolytic potential than other Aspergilli, possibly facilitating additional applications for these species in biotechnology.

5.
Fungal Genet Biol ; 173: 103913, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39004162

RESUMEN

Schizophyllum commune is a mushroom-forming fungus notable for its distinctive fruiting bodies with split gills. It is used as a model organism to study mushroom development, lignocellulose degradation and mating type loci. It is a hypervariable species with considerable genetic and phenotypic diversity between the strains. In this study, we systematically phenotyped 16 dikaryotic strains for aspects of mushroom development and 18 monokaryotic strains for lignocellulose degradation. There was considerable heterogeneity among the strains regarding these phenotypes. The majority of the strains developed mushrooms with varying morphologies, although some strains only grew vegetatively under the tested conditions. Growth on various carbon sources showed strain-specific profiles. The genomes of seven monokaryotic strains were sequenced and analyzed together with six previously published genome sequences. Moreover, the related species Schizophyllum fasciatum was sequenced. Although there was considerable genetic variation between the genome assemblies, the genes related to mushroom formation and lignocellulose degradation were well conserved. These sequenced genomes, in combination with the high phenotypic diversity, will provide a solid basis for functional genomics analyses of the strains of S. commune.


Asunto(s)
Variación Genética , Genoma Fúngico , Genotipo , Lignina , Fenotipo , Schizophyllum , Schizophyllum/genética , Schizophyllum/crecimiento & desarrollo , Schizophyllum/clasificación , Lignina/metabolismo , Genoma Fúngico/genética , Filogenia , Agaricales/genética , Agaricales/crecimiento & desarrollo , Agaricales/clasificación , Análisis de Secuencia de ADN
6.
Cell Genom ; 4(7): 100586, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38942024

RESUMEN

Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.


Asunto(s)
Agaricales , Genoma Fúngico , Genoma Fúngico/genética , Agaricales/genética , Filogenia , Elementos Transponibles de ADN/genética , Evolución Molecular , Transferencia de Gen Horizontal , Plantas/microbiología , Plantas/genética
7.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38940768

RESUMEN

BACKGROUND: Colletotrichum fungi infect a wide diversity of monocot and dicot hosts, causing diseases on almost all economically important plants worldwide. Colletotrichum is also a suitable model for studying gene family evolution on a fine scale to uncover events in the genome associated with biological changes. RESULTS: Here we present the genome sequences of 30 Colletotrichum species covering the diversity within the genus. Evolutionary analyses revealed that the Colletotrichum ancestor diverged in the late Cretaceous in parallel with the diversification of flowering plants. We provide evidence of independent host jumps from dicots to monocots during the evolution of Colletotrichum, coinciding with a progressive shrinking of the plant cell wall degradative arsenal and expansions in lineage-specific gene families. Comparative transcriptomics of 4 species adapted to different hosts revealed similarity in gene content but high diversity in the modulation of their transcription profiles on different plant substrates. Combining genomics and transcriptomics, we identified a set of core genes such as specific transcription factors, putatively involved in plant cell wall degradation. CONCLUSIONS: These results indicate that the ancestral Colletotrichum were associated with dicot plants and certain branches progressively adapted to different monocot hosts, reshaping the gene content and its regulation.


Asunto(s)
Colletotrichum , Evolución Molecular , Genoma Fúngico , Transcriptoma , Colletotrichum/genética , Colletotrichum/patogenicidad , Filogenia , Adaptación Fisiológica/genética , Perfilación de la Expresión Génica/métodos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética
9.
Front Bioeng Biotechnol ; 12: 1356551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638323

RESUMEN

The Lipomyces clade contains oleaginous yeast species with advantageous metabolic features for biochemical and biofuel production. Limited knowledge about the metabolic networks of the species and limited tools for genetic engineering have led to a relatively small amount of research on the microbes. Here, a genome-scale metabolic model (GSM) of Lipomyces starkeyi NRRL Y-11557 was built using orthologous protein mappings to model yeast species. Phenotypic growth assays were used to validate the GSM (66% accuracy) and indicated that NRRL Y-11557 utilized diverse carbohydrates but had more limited catabolism of organic acids. The final GSM contained 2,193 reactions, 1,909 metabolites, and 996 genes and was thus named iLst996. The model contained 96 of the annotated carbohydrate-active enzymes. iLst996 predicted a flux distribution in line with oleaginous yeast measurements and was utilized to predict theoretical lipid yields. Twenty-five other yeasts in the Lipomyces clade were then genome sequenced and annotated. Sixteen of the Lipomyces species had orthologs for more than 97% of the iLst996 genes, demonstrating the usefulness of iLst996 as a broad GSM for Lipomyces metabolism. Pathways that diverged from iLst996 mainly revolved around alternate carbon metabolism, with ortholog groups excluding NRRL Y-11557 annotated to be involved in transport, glycerolipid, and starch metabolism, among others. Overall, this study provides a useful modeling tool and data for analyzing and understanding Lipomyces species metabolism and will assist further engineering efforts in Lipomyces.

10.
Ecotoxicol Environ Saf ; 270: 115808, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38198896

RESUMEN

Despite various plans to rationalize antibiotic use, antibiotic resistance in environmental bacteria is increasing due to the accumulation of antibiotic residues in the environment. This study aimed to test the ability of basidiomycete fungal strains to biotransform the antibiotic levofloxacin, a widely-used third-generation broad-spectrum fluoroquinolone, and to propose enzyme targets potentially involved in this biotransformation. The biotransformation process was performed using fungal strains. Levofloxacin biotransformation reached 100% after 9 days of culture with Porostereum spadiceum BS34. Using genomics and proteomics analyses coupled with activity tests, we showed that P. spadiceum produces several heme-peroxidases together with H2O2-producing enzymes that could be involved in the antibiotic biotransformation process. Using UV and high-resolution mass spectrometry, we were able to detect five levofloxacin degradation products. Their putative identity based on their MS2 fragmentation patterns led to the conclusion that the piperazine moiety was the main target of oxidative modification of levofloxacin by P. spadiceum, leading to a decrease in antibiotic activity.


Asunto(s)
Peróxido de Hidrógeno , Levofloxacino , Polyporales , Antibacterianos/química , Fluoroquinolonas/química , Hongos/metabolismo
11.
Mol Phylogenet Evol ; 193: 108010, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38195011

RESUMEN

Nidulariaceae, also known as bird's nest fungi, is an understudied group of mushroom-forming fungi. The common name is derived from their nest-like morphology. Bird's nest fungi are ubiquitous wood decomposers or saprobes on dung. Recent studies showed that species in the Nidulariaceae form a monophyletic group with five sub-clades. However, phylogenetic relationships among genera and placement of Nidulariaceae are still unclear. We present phylogenomic analyses of bird's nest fungi and related Agaricales fungi to gain insight into the evolution of Nidulariaceae. A species tree with 17 newly generated genomes of bird's nest fungi and representatives from all major clades of Agaricales was constructed using 1044 single-copy genes to explore the intergeneric relationships and pinpoint the placement of Nidulariaceae within Agaricales. We corroborated the hypothesis that bird's nest fungi are sister to Squamanitaceae, which includes mushroom-shaped fungi with a stipe and pileus that are saprobes and mycoparasites. Lastly, stochastic character mapping of discrete traits on phylogenies (SIMMAP) suggests that the ancestor of bird's nest fungi likely possessed an evanescent, globose peridium without strings attaching to the spore packets (funiculi). This analysis suggests that the funiculus was gained twice and that the persistent, cupulate peridium form was gained at least four times and lost once. However, alternative coding schemes and datasets with a wider array of Agaricales produced conflicting results during ancestral state reconstruction, indicating that there is some uncertainty in the number of peridium transitions and that taxon sampling may significantly alter ancestral state reconstructions. Overall, our results suggest that several key morphological characters of Nidulariaceae have been subject to homoplasy.


Asunto(s)
Cyathus , Animales , Filogenia , Aves
12.
New Phytol ; 242(4): 1676-1690, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38148573

RESUMEN

Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.


Asunto(s)
Bosques , Hongos , Microbiología del Suelo , Transcriptoma , Hongos/genética , Hongos/fisiología , Transcriptoma/genética , Micorrizas/fisiología , Micorrizas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Nitrógeno/metabolismo , Suelo/química , Ecosistema , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Mol Phylogenet Evol ; 189: 107938, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820761

RESUMEN

The order Sordariales is taxonomically diverse, and harbours many species with different lifestyles and large economic importance. Despite its importance, a robust genome-scale phylogeny, and associated comparative genomic analysis of the order is lacking. In this study, we examined whole-genome data from 99 Sordariales, including 52 newly sequenced genomes, and seven outgroup taxa. We inferred a comprehensive phylogeny that resolved several contentious relationships amongst families in the order, and cleared-up intrafamily relationships within the Podosporaceae. Extensive comparative genomics showed that genomes from the three largest families in the dataset (Chaetomiaceae, Podosporaceae and Sordariaceae) differ greatly in GC content, genome size, gene number, repeat percentage, evolutionary rate, and genome content affected by repeat-induced point mutations (RIP). All genomic traits showed phylogenetic signal, and ancestral state reconstruction revealed that the variation of the properties stems primarily from within-family evolution. Together, the results provide a thorough framework for understanding genome evolution in this important group of fungi.


Asunto(s)
Genómica , Sordariales , Humanos , Filogenia , Genómica/métodos , Genoma , Sordariales/genética , Secuencia de Bases , Evolución Molecular
15.
Fungal Genet Biol ; 169: 103838, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716699

RESUMEN

Intimate associations between fungi and intracellular bacterial endosymbionts are becoming increasingly well understood. Phylogenetic analyses demonstrate that bacterial endosymbionts of Mucoromycota fungi are related either to free-living Burkholderia or Mollicutes species. The so-called Burkholderia-related endosymbionts or BRE comprise Mycoavidus, Mycetohabitans and Candidatus Glomeribacter gigasporarum. These endosymbionts are marked by genome contraction thought to be associated with intracellular selection. However, the conclusions drawn thus far are based on a very small subset of endosymbiont genomes, and the mechanisms leading to genome streamlining are not well understood. The purpose of this study was to better understand how intracellular existence shapes Mycoavidus and BRE functionally at the genome level. To this end we generated and analyzed 14 novel draft genomes for Mycoavidus living within the hyphae of Mortierellomycotina fungi. We found that our novel Mycoavidus genomes were significantly reduced compared to free-living Burkholderiales relatives. Using a genome-scale phylogenetic approach including the novel and available existing genomes of Mycoavidus, we show that the genus is an assemblage composed of two independently derived lineages including three well supported clades of Mycoavidus. Using a comparative genomic approach, we shed light on the functional implications of genome reduction, documenting shared and unique gene loss patterns between the three Mycoavidus clades. We found that many endosymbiont isolates demonstrate patterns of vertical transmission and host-specificity, but others are present in phylogenetically disparate hosts. We discuss how reductive evolution and host specificity reflect convergent adaptation to the intrahyphal selective landscape, and commonalities of eukaryotic endosymbiont genome evolution.


Asunto(s)
Burkholderiaceae , Adaptación al Huésped , Filogenia , Burkholderiaceae/genética , Hongos/genética , Bacterias , Simbiosis/genética
16.
Commun Biol ; 6(1): 948, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723238

RESUMEN

Diverse members of early-diverging Mucoromycota, including mycorrhizal taxa and soil-associated Mortierellaceae, are known to harbor Mollicutes-related endobacteria (MRE). It has been hypothesized that MRE were acquired by a common ancestor and transmitted vertically. Alternatively, MRE endosymbionts could have invaded after the divergence of Mucoromycota lineages and subsequently spread to new hosts horizontally. To better understand the evolutionary history of MRE symbionts, we generated and analyzed four complete MRE genomes from two Mortierellaceae genera: Linnemannia (MRE-L) and Benniella (MRE-B). These genomes include the smallest known of fungal endosymbionts and showed signals of a tight relationship with hosts including a reduced functional capacity and genes transferred from fungal hosts to MRE. Phylogenetic reconstruction including nine MRE from mycorrhizal fungi revealed that MRE-B genomes are more closely related to MRE from Glomeromycotina than MRE-L from the same host family. We posit that reductions in genome size, GC content, pseudogene content, and repeat content in MRE-L may reflect a longer-term relationship with their fungal hosts. These data indicate Linnemannia and Benniella MRE were likely acquired independently after their fungal hosts diverged from a common ancestor. This work expands upon foundational knowledge on minimal genomes and provides insights into the evolution of bacterial endosymbionts.


Asunto(s)
Micorrizas , Tenericutes , Filogenia , Genómica , Micorrizas/genética , Tamaño del Genoma
17.
Nat Microbiol ; 8(9): 1668-1681, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550506

RESUMEN

The fungal genus Armillaria contains necrotrophic pathogens and some of the largest terrestrial organisms that cause tremendous losses in diverse ecosystems, yet how they evolved pathogenicity in a clade of dominantly non-pathogenic wood degraders remains elusive. Here we show that Armillaria species, in addition to gene duplications and de novo gene origins, acquired at least 1,025 genes via 124 horizontal gene transfer events, primarily from Ascomycota. Horizontal gene transfer might have affected plant biomass degrading and virulence abilities of Armillaria, and provides an explanation for their unusual, soft rot-like wood decay strategy. Combined multi-species expression data revealed extensive regulation of horizontally acquired and wood-decay related genes, putative virulence factors and two novel conserved pathogenicity-induced small secreted proteins, which induced necrosis in planta. Overall, this study details how evolution knitted together horizontally and vertically inherited genes in complex adaptive traits of plant biomass degradation and pathogenicity in important fungal pathogens.


Asunto(s)
Armillaria , Armillaria/genética , Armillaria/metabolismo , Biomasa , Transferencia de Gen Horizontal , Ecosistema , Plantas
18.
Mol Plant Pathol ; 24(9): 1168-1183, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37340595

RESUMEN

Spray-induced gene silencing (SIGS) is an emerging tool for crop pest protection. It utilizes exogenously applied double-stranded RNA to specifically reduce pest target gene expression using endogenous RNA interference machinery. In this study, SIGS methods were developed and optimized for powdery mildew fungi, which are widespread obligate biotrophic fungi that infect agricultural crops, using the known azole-fungicide target cytochrome P450 51 (CYP51) in the Golovinomyces orontii-Arabidopsis thaliana pathosystem. Additional screening resulted in the identification of conserved gene targets and processes important to powdery mildew proliferation: apoptosis-antagonizing transcription factor in essential cellular metabolism and stress response; lipid catabolism genes lipase a, lipase 1, and acetyl-CoA oxidase in energy production; and genes involved in manipulation of the plant host via abscisic acid metabolism (9-cis-epoxycarotenoid dioxygenase, xanthoxin dehydrogenase, and a putative abscisic acid G-protein coupled receptor) and secretion of the effector protein, effector candidate 2. Powdery mildew is the dominant disease impacting grapes and extensive powdery mildew resistance to applied fungicides has been reported. We therefore developed SIGS for the Erysiphe necator-Vitis vinifera system and tested six successful targets identified using the G. orontii-A. thaliana system. For all targets tested, a similar reduction in powdery mildew disease was observed between systems. This indicates screening of broadly conserved targets in the G. orontii-A. thaliana pathosystem identifies targets and processes for the successful control of other powdery mildew fungi. The efficacy of SIGS on powdery mildew fungi makes SIGS an exciting prospect for commercial powdery mildew control.


Asunto(s)
Arabidopsis , Arabidopsis/microbiología , Ácido Abscísico/metabolismo , Secuencia de Bases , Silenciador del Gen , Enfermedades de las Plantas/microbiología
19.
Genetics ; 224(2)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37070772

RESUMEN

Studying the signatures of evolution can help to understand genetic processes. Here, we demonstrate how the existence of balancing selection can be used to identify the breeding systems of fungi from genomic data. The breeding systems of fungi are controlled by self-incompatibility loci that determine mating types between potential mating partners, resulting in strong balancing selection at the loci. Within the fungal phylum Basidiomycota, two such self-incompatibility loci, namely HD MAT locus and P/R MAT locus, control mating types of gametes. Loss of function at one or both MAT loci results in different breeding systems and relaxes the MAT locus from balancing selection. By investigating the signatures of balancing selection at MAT loci, one can infer a species' breeding system without culture-based studies. Nevertheless, the extreme sequence divergence among MAT alleles imposes challenges for retrieving full variants from both alleles when using the conventional read-mapping method. Therefore, we employed a combination of read-mapping and local de novo assembly to construct haplotypes of HD MAT alleles from genomes in suilloid fungi (genera Suillus and Rhizopogon). Genealogy and pairwise divergence of HD MAT alleles showed that the origins of mating types predate the split between these two closely related genera. High sequence divergence, trans-specific polymorphism, and the deeply diverging genealogy confirm the long-term functionality and multiallelic status of HD MAT locus in suilloid fungi. This work highlights a genomics approach to studying breeding systems regardless of the culturability of organisms based on the interplay between evolution and genetics.


Asunto(s)
Basidiomycota , Evolución Molecular , Fitomejoramiento , Basidiomycota/genética , Genómica , Polimorfismo Genético , Genes del Tipo Sexual de los Hongos/genética , Filogenia , Hongos/genética
20.
Nat Commun ; 14(1): 1835, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005409

RESUMEN

With >7000 species the order of rust fungi has a disproportionately large impact on agriculture, horticulture, forestry and foreign ecosystems. The infectious spores are typically dikaryotic, a feature unique to fungi in which two haploid nuclei reside in the same cell. A key example is Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease, one of the world's most economically damaging agricultural diseases. Despite P. pachyrhizi's impact, the exceptional size and complexity of its genome prevented generation of an accurate genome assembly. Here, we sequence three independent P. pachyrhizi genomes and uncover a genome up to 1.25 Gb comprising two haplotypes with a transposable element (TE) content of ~93%. We study the incursion and dominant impact of these TEs on the genome and show how they have a key impact on various processes such as host range adaptation, stress responses and genetic plasticity.


Asunto(s)
Basidiomycota , Phakopsora pachyrhizi , Elementos Transponibles de ADN/genética , Glycine max/genética , Glycine max/microbiología , Ecosistema , Basidiomycota/genética , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA