Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292642

RESUMEN

Polyols, or sugar alcohols, are widely used in the industry as sweeteners and food formulation ingredients, aiming to combat the incidence of diet-related Non-Communicable Diseases. Given the attractive use of Generally Regarded As Safe (GRAS) enzymes in both academia and industry, this study reports on an optimized process to achieve polyols transglucosylation using a dextransucrase enzyme derived from Leuconostoc mesenteroides. These enzyme modifications could lead to the creation of a new generation of glucosylated polyols with isomalto-oligosaccharides (IMOS) structures, potentially offering added functionalities such as prebiotic effects. These reactions were guided by a design of experiment framework, aimed at maximizing the yields of potential new sweeteners. Under the optimized conditions, dextransucrase first cleared the glycosidic bond of sucrose, releasing fructose with the formation of an enzyme-glucosyl covalent intermediate complex. Then, the acceptor substrate (i.e., polyols) is bound to the enzyme-glucosyl intermediate, resulting in the transfer of glucosyl unit to the tested polyols. Structural insights into the reaction products were obtained through nuclear maneic resonance (NMR) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analyses, which revealed the presence of linear α(1 → 6) glycosidic linkages attached to the polyols, yielding oligosaccharide structures containing from 4 to 10 glucose residues. These new polyols-based oligosaccharides hold promise as innovative prebiotic sweeteners, potentially offering valuable health benefits.

2.
Crit Rev Biotechnol ; 44(6): 1080-1102, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103281

RESUMEN

The rapid increase in the worldwide prevalence of obesity and certain non-communicable diseases (NCDs), such as: cardiovascular diseases, cancers, chronic respiratory diseases, and diabetes, has been mainly attributed to an excess of sugar consumption. Although the potential benefits of the synergetic use of sweeteners have been known for many years, recent development based on synthesis strategies to produce sucrose-like taste profiles is emerging where biocatalyst approaches may be preferred to produce and supply specific sweetener compounds. From a nutritional standpoint, high-intensity sweeteners have fewer calories than sugars while providing a major sweet potency, placing them in the spotlight as valuable alternatives to sugar. Due to the modern world awareness and incidence of metabolic diseases, both food research and growing markets have focused on two generally regarded as safe (GRAS) groups of compounds: the sweet diterpenoid glycosides present on the leaves of Stevia rebaudiana and, more recently, on the cucurbitane triterpene glycosides present on the fruits of Siraitia grosvenorii. In spite of their flavor advantages, biological benefits, including: antidiabetic, anticancer, and cardiovascular properties, have been elucidated. The present bibliographical review dips into the state-of-the-art of sweeteners and their role in human health as sugar replacements, as well as the biotransformation methods for steviol gylcosides and mogrosides apropos of enzymatic technology to update and locate the discoveries to date in the scientific literature to help boost the continuity of research efforts of the ongoing sweeteners.


Asunto(s)
Stevia , Edulcorantes , Humanos , Cucurbitaceae/metabolismo
3.
J Agric Food Chem ; 70(49): 15531-15538, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36454042

RESUMEN

The hydrolysis of plant glucosinolates by myrosinases (thioglucosidases) originates metabolites with chemopreventive properties. In this study, the ability to hydrolyze the glucosinolate sinigrin by cultures or protein extracts of Lactiplantibacillus plantarum WCFS1 was assayed. This strain possesses myrosinase-like activity as sinigrin was partly hydrolyzed by induced cultures but not by protein extracts. The 11 glycoside hydrolase GH1 family proteins, annotated as 6-phospho-ß-glucosidases, were the proteins most similar to plant myrosinases. The activity of these proteins was assayed against sinigrin and synthetic glucosides. As expected, none of the proteins assayed possessed myrosinase activity against sinigrin or the synthetic ß-thio-glucoside derivative or against the ß-glucoside. However, all 11 proteins were active on the phosphorylated-ß-glucoside derivative. Moreover, only eight of these proteins were active on phospho-ß-thioglucose. These results supported that, in L. plantarum WCFS1, glucosinolates may undergo previous phosphorylation, and GH1 proteins are the glycosidases involved in the hydrolysis of phosphorylated glucosinolates.


Asunto(s)
Glucosinolatos , Glicósido Hidrolasas , Glucosinolatos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hidrólisis
4.
J Agric Food Chem ; 70(29): 9048-9056, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35830712

RESUMEN

This study was conducted to investigate the sweetness intensity and the potential fecal microbiome modulation of galactooligosaccharides in combination with enzymatically modified mogrosides (mMV-GOS), both generated through a patented single-pot synthesis. Sweetness intensity was performed in vivo by trained sensory panelists. The impact on the human fecal microbiome was evaluated by in vitro pH-controlled batch fermentation, and bacterial populations and organic acid concentrations were measured by qPCR and GC-FID, respectively. Significant growth (p ≤ 0.05) during the fermentation at 10 h of bacterial populations includes Bifidobacterium (8.49 ± 0.44 CFU/mL), Bacteroides (9.73 ± 0.32 CFU/mL), Enterococcus (8.17 ± 0.42 CFU/mL), and Clostridium coccoides (6.15 ± 0.11 CFU/mL) as compared to the negative control counts for each bacterial group (7.94 ± 0.27, 7.84 ± 1.11, 7.52 ± 0.37, and 5.81 ± 0.08 CFU/mL, respectively) at the same time of fermentation. Likewise, the corresponding significant increase in production of SCFA in mMV-GOS at 10 h of fermentation, mainly seen in acetate (20.32 ± 2.56 mM) and propionate (9.49 ± 1.44 mM) production compared to a negative control at the same time (8.15 ± 1.97 and 1.86 ± 0.24 mM), is in line with a positive control (short-chain fructooligosaccharides; 46.74 ± 12.13 and 6.51 ± 1.91 mM, respectively) revealing a selective fermentation. In conclusion, these substrates could be considered as novel candidate prebiotic sweeteners, foreseeing a feasible and innovative approach targeting the sucrose content reduction in food. This new ingredient could provide health benefits when evaluated in human studies by combining sweetness and prebiotic fiber functionality.


Asunto(s)
Ácidos Grasos Volátiles , Prebióticos , Bacterias/genética , Bifidobacterium , Heces/microbiología , Fermentación , Humanos , Oligosacáridos , Edulcorantes
5.
Phys Chem Chem Phys ; 23(25): 13819-13826, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34195732

RESUMEN

High salt concentration has been shown to induce increased electrochemical stability in organic solvent-based electrolytes. Accompanying the change in bulk properties is a structural ordering on mesoscopic length scales and changes in the ion transport mechanism have also been suggested. Here we investigate the local structure and dynamics in highly concentrated acetonitrile electrolytes as a function of salt concentration. Already at low concentrations ordering on microscopic length scales in the electrolytes is revealed by small angle X-ray scattering, as a result of correlations of Li+ coordinating clusters. For higher salt concentrations a charge alternation-like ordering is found as anions start to take part in the solvation. Results from quasi-elastic neutron spectroscopy reveal a jump diffusion dynamical process with jump lengths virtually independent of both temperature and Li-salt concentration. The jump can be envisaged as dissociation of a solvent molecule or anion from a particular Li+ solvation structure. The residence time, 50-800 ps, between the jumps is found to be highly temperature and Li-salt concentration dependent, with shorter residence times for higher temperature and lower concentrations. The increased residence time at high Li-salt concentration can be attributed to changes in the interaction of the solvation shell as a larger fraction of TFSI anions take part in the solvation, forming more stable solvation shells.

6.
J Agric Food Chem ; 69(3): 1011-1019, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33428404

RESUMEN

Luo Han Guo fruit extract (Siraitia grosvenorii), mainly composed of mogroside V (50%), could be considered a suitable alternative to free sugars; however, its commercial applications are limited by its unpleasant off-notes. In the present work, a central composite design method was employed to optimize the transglycosylation of a mogroside extract using cyclodextrin glucosyltransferases (CGTases) from three different bacteriological sources (Paenibacillus macerans, Geobacillus sp., and Thermoanaerobacter sp.) considering various experimental parameters such as maltodextrin and mogroside concentration, temperature, time of reaction, enzymatic activity, and pH. Product structures were determined by liquid chromatography coupled to a diode-array detector (LC-DAD), liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Sensory analysis of glucosylated mogrosides showed an improvement in flavor attributes relevant to licorice flavor and aftereffect. Consequently, an optimum methodology was developed to produce new modified mogrosides more suitable when formulating food products as free sugar substitutes.


Asunto(s)
Proteínas Bacterianas/química , Cucurbitaceae/química , Glucósidos/biosíntesis , Glucosiltransferasas/química , Extractos Vegetales/química , Edulcorantes/síntesis química , Biocatálisis , Cromatografía Líquida de Alta Presión , Frutas/química , Geobacillus/enzimología , Glucósidos/química , Paenibacillus/enzimología , Extractos Vegetales/síntesis química , Espectrometría de Masa por Ionización de Electrospray , Edulcorantes/química , Thermoanaerobacter/enzimología
7.
Foods ; 9(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256263

RESUMEN

To improve flavor profiles, three cyclodextrin glucosyltransferases (CGTases) from different bacteriological sources, Paenibacillus macerans, Geobacillus sp. and Thermoanaerobacter sp., were used with an extract of steviol glycosides (SVglys) and rebaudioside A (RebA) as acceptor substrates in two parallel sets of reactions. A central composite experimental design was employed to maximize the concentration of glucosylated species synthesized, considering temperature, pH, time of reaction, enzymatic activity, maltodextrin concentration and SVglys/RebA concentration as experimental factors, together with their interactions. Liquid chromatography coupled to a diode-array detector (LC-DAD), liquid chromatography-mass spectrometry (LC-ESI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were used to characterize and identify the chemical structures obtained along the optimization. To assess the impact on the sensory properties, a sensory analysis was carried out with a group of panelists that evaluated up to 16 sensorial attributes. CGTase transglucosylation of the C-13 and/or C-19 led to the addition of up to 11 glucose units to the steviol aglycone, which meant the achievement of enhanced sensory profiles due to a diminution of bitterness and licorice appreciations. The outcome herein obtained supposes the development of new potential alternatives to replace free sugars with low-calorie sweeteners with added health benefits.

8.
J Synchrotron Radiat ; 27(Pt 2): 396-404, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153278

RESUMEN

An acoustically levitated droplet has been used to collect synchrotron SAXS data on human serum albumin protein solutions up to a protein concentration of 400 mg ml-1. A careful selection of experiments allows for fast data collection of a large amount of data, spanning a protein concentration/solvent concentration space with limited sample consumption (down to 3 µL per experiment) and few measurements. The data analysis shows data of high quality that are reproducible and comparable with data from standard flow-through capillary-based experiments. Furthermore, using this methodology, it is possible to achieve concentrations that would not be accessible by conventional cells. The protein concentration and ionic strength parameter space diagram may be covered easily and the amount of protein sample is significantly reduced (by a factor of 100 in this work). Used in routine measurements, the benefits in terms of protein cost and time spent are very significant.


Asunto(s)
Química Física/métodos , Albúmina Sérica/química , Sincrotrones , Acústica , Humanos , Modelos Químicos , Reproducibilidad de los Resultados , Dispersión del Ángulo Pequeño
9.
Ultrason Sonochem ; 50: 74-81, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30219355

RESUMEN

The impact of high intensity ultrasound (US, 45 and 20 kHz) on a purified macromolecular fraction (more than 85% of polymeric procyanidins) from grape seed extract was investigated. Matrix-Assisted Laser Desorption/Ionisation (MALDI-TOF), Reverse Phase High Performance Liquid Chromatography (RP-HPLC) and Fourier-transform infrared spectroscopy (FTIR) revealed a modification in the chemical structure of these macromolecules treated by US and, particularly, bath US produced a considerable increase of up to 49, 41 and 35%, respectively, of catechins and oligomeric and polymeric procyanidin contents of the treated purified fraction. Bath US also produced an important increase in the number of procyanidins with higher molecular mass (up to decamers) and an overall increase in the mass signal intensities in most of the detected B-type procyanidin series, as well as an important increase of the antioxidant activity of the macromolecular fraction of procyanidins. These results could be ascribed to a certain disaggregation of procyanidins linked to other biopolymers, such as proteins and/or polysaccharides, indicating that US is an efficient technology to modify the chemical structure and hence the bioactivity of tannins.


Asunto(s)
Antioxidantes/farmacología , Biflavonoides/análisis , Catequina/análisis , Extracto de Semillas de Uva/farmacología , Extractos Vegetales/farmacología , Proantocianidinas/análisis , Ondas Ultrasónicas , Biflavonoides/química , Catequina/química , Cromatografía Líquida de Alta Presión , Extracto de Semillas de Uva/química , Peso Molecular , Extractos Vegetales/química , Proantocianidinas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectroscopía Infrarroja por Transformada de Fourier
10.
J Sci Food Agric ; 98(13): 4866-4875, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29570806

RESUMEN

BACKGROUND: Pectin is heteropolysaccharide found in cell walls originating mainly from by-products, as well as citrus peels, apple and sugar beet pulp, and presenting biological and techno-functional properties. In the present study, a general and structural characterisation of industrial citrus pectins was performed together with a study of impact of power ultrasound (US) on their rheological properties, with the aim of using them as edible coatings for fresh strawberries. RESULTS: The results obtained indicated that pure pectin showed a methylesterification degree greater than 50% and galacturonic acid content > 65%, supporting its consideration as additive E-440; such conditions were not achieved in pectin with sugar addition. Furthermore, in the rheological study, pectin gels showed a non-Newtonian flow and pseudoplastic behaviour and presented different viscosity ranges depending on the preparation methods, including power US. Gels were used as edible coatings for fresh strawberries aiming to improve their quality during storage over a period of 5 days, controlling quality characteristics such as humidity loss, acidity and colour parameters (L*, a*, b*, C, h°, ΔE). CONCLUSION: The results obtained demonstrate that US treatments give rise to pectin gels that can improve the quality of strawberries over their lifetime. © 2018 Society of Chemical Industry.


Asunto(s)
Conservación de Alimentos/métodos , Fragaria/química , Frutas/química , Geles/química , Pectinas/química , Conservación de Alimentos/instrumentación , Viscosidad
11.
Langmuir ; 33(44): 12804-12813, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-28981289

RESUMEN

Oxylipins, or fatty aldehydes, are a class of molecules produced from membrane lipids as a result of oxidative stress or enzyme-mediated peroxidation. Here we report the effects of two biologically important fatty aldehydes, trans,trans-2,4-decanedienal (DD) and cis-11-hexadecenal (HD), on the phase behavior of the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in water. We compare the phase behavior of DD/DOPE and HD/DOPE mixtures to the phase behavior of oleic acid/DOPE mixtures and show that DD, HD, and oleic acid have similar effects on the phase diagrams of DOPE. Notably, both DD and HD, like oleic acid, induce the formation of Fd3m inverse micellar cubic phases in DOPE/water mixtures. This is the first time that Fd3m phases in fatty aldehyde-containing mixtures have been reported. We assess the effects of DD, HD, and oleic acid on DOPE in terms of lipid spontaneous curvatures and propose a method to predict the formation of Fd3m phases from the curvature power of amphiphiles. This methodology predicts that Fd3m phases will become stable if the spontaneous curvature of a lipid mixture is -0.48 ± 0.05 nm-1 or less.

13.
J Phys Chem Lett ; 8(1): 73-79, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27936765

RESUMEN

A microfluidic platform combined with synchrotron small-angle X-ray scattering (SAXS) was used for monitoring the continuous production of multilamellar vesicles (MLVs). Their production was fast and started to evolve within less than 0.43 s of contact between the lipids and the aqueous phase. To obtain nanoparticles with a narrow size distribution, it was important to use a modified hydrodynamic flow focusing (HFF) microfluidic device with narrower microchannels than those normally used for SAXS experiments. Monodispersed MLVs as small as 160 nm in size, with a polydispersity index (PDI) of approximately 0.15 were achieved. The nanoparticles produced were smaller and had a narrower size distribution than those obtained via conventional bulk mixing methods. This microfluidic platform therefore has a great potential for the continuous production of monodispersed NPs.

14.
Nano Lett ; 16(11): 6838-6843, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27779885

RESUMEN

Mesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops. Analysis of time-resolved small-angle X-ray scattering data and ex situ scanning electron microscopy together with interparticle potential calculations show that the substrate-free, particle-mediated crystallization process proceeds in two stages involving the formation and rapid transformation of a dense, structurally disordered phase into ordered mesocrystals. Controlling and tailoring the particle-mediated formation of mesocrystals could be utilized to assemble designed nanoparticles into new materials with unique functions.

15.
Langmuir ; 32(39): 10083-10092, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27603198

RESUMEN

Recently we reported a method for estimating the spontaneous curvatures of lipids from temperature-dependent changes in the lattice parameter of inverse hexagonal liquid crystal phases of binary lipid mixtures. This method makes use of 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE) as a host lipid, which preferentially forms an inverse hexagonal phase to which a guest lipid of unknown spontaneous curvature is added. The lattice parameters of these binary lipid mixtures are determined by small-angle X-ray diffraction at a range of temperatures and the spontaneous curvature of the guest lipid is determined from these data. Here we report the use of this method on a wide range of lipids under different ionic conditions. We demonstrate that our method provides spontaneous curvature values for DOPE, cholesterol, and monoolein that are within the range of values reported in the literature. Anionic lipids 1,2-dioleoyl-sn-glycerol-3-phosphatidic acid (DOPA) and 1,2-dioleoyl-sn-glycerol-3-phosphoserine (DOPS) were found to exhibit spontaneous curvatures that depend on the concentration of divalent cations present in the mixtures. We show that the range of curvatures estimated experimentally for DOPA and DOPS can be explained by a series of equilibria arising from lipid-cation exchange reactions. Our data indicate a universal relationship between the spontaneous curvature of a lipid and the extent to which it affects the lattice parameter of the hexagonal phase of DOPE when it is part of a binary mixture. This universal relationship affords a rapid way of estimating the spontaneous curvatures of lipids that are expensive, only available in small amounts, or are of limited chemical stability.

16.
Phys Chem Chem Phys ; 17(40): 27082-7, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26411592

RESUMEN

In this work we report on the evolution of the structure of two model ionic liquid families, N-alkyl-N-methylpyrrolidinium (Pyr1n-TFSI) and 1-alkyl-3-methylimidazolium (CnMIm-TFSI) (n = 3, 4, 6 and 8) both containing the bis(trifluoromethanesulfonyl)imide (TFSI) anion, upon the addition of LiTFSI using small angle X-ray scattering (SAXS). The introduction of a lithium salt (Li-salt) tunes the interactions through the substitution of the large cation in the ionic liquid with the small and charge localized lithium ion, thus increasing the coulombic contribution from ion-ion interactions. We find that the introduction of lithium ions results in a restructuring of the polar groups in the ionic liquids. These changes are manifested as an increase in the correlation lengths related to charge alternation of the ions and a more disordered structure. This restructuring is interpreted as a reconfiguration of the anions as they coordinate to the small and ionic lithium. In contrast, the length scale of the mesoscopic heterogeneities related to the clustering of alkyl chains is virtually unchanged with lithium doping. Moreover, the correlation corresponding to alkyl chain domains becomes more well defined with increasing salt concentration, suggesting that Li-salt doping, i.e. an increased columbic interaction in the system, promotes clustering of the alkyl tails.

17.
J Biomed Opt ; 19(2): 025003, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24522802

RESUMEN

Callus formation is a critical step for successful fracture healing. Little is known about the molecular composition and mineral structure of the newly formed tissue in the callus. The aim was to evaluate the feasibility of small angle x-ray scattering (SAXS) to assess mineral structure of callus and cortical bone and if it could provide complementary information with the compositional analyses from Fourier transform infrared (FTIR) microspectroscopy. Femurs of 12 male Sprague-Dawley rats at 9 weeks of age were fractured and fixed with an intramedullary 1.1 mm K-wire. Fractures were treated with the combinations of bone morphogenetic protein-7 and/or zoledronate. Rats were sacrificed after 6 weeks and both femurs were prepared for FTIR and SAXS analysis. Significant differences were found in the molecular composition and mineral structure between the fracture callus, fracture cortex, and control cortex. The degree of mineralization, collagen maturity, and degree of orientation of the mineral plates were lower in the callus tissue than in the cortices. The results indicate the feasibility of SAXS in the investigation of mineral structure of bone fracture callus and provide complementary information with the composition analyzed with FTIR. Moreover, this study contributes to the limited FTIR and SAXS data in the field.


Asunto(s)
Callo Óseo/química , Fracturas del Fémur/fisiopatología , Fémur/química , Minerales/análisis , Animales , Proteínas Morfogenéticas Óseas/análisis , Proteínas Morfogenéticas Óseas/química , Callo Óseo/fisiología , Fracturas del Fémur/metabolismo , Curación de Fractura/fisiología , Masculino , Minerales/química , Ratas , Ratas Sprague-Dawley , Dispersión del Ángulo Pequeño , Cloruro de Sodio/análisis , Cloruro de Sodio/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Microtomografía por Rayos X
18.
J Synchrotron Radiat ; 20(Pt 4): 648-53, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23765310

RESUMEN

The macromolecular crystallography beamline I911-3, part of the Cassiopeia/I911 suite of beamlines, is based on a superconducting wiggler at the MAX II ring of the MAX IV Laboratory in Lund, Sweden. The beamline is energy-tunable within a range between 6 and 18 keV. I911-3 opened for users in 2005. In 2010-2011 the experimental station was completely rebuilt and refurbished such that it has become a state-of-the-art experimental station with better possibilities for rapid throughput, crystal screening and work with smaller samples. This paper describes the complete I911-3 beamline and how it is embedded in the Cassiopeia suite of beamlines.

19.
J Synchrotron Radiat ; 18(Pt 6): 891-8, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21997914

RESUMEN

Some theoretical and practical aspects of the application of transmission microdiffraction (µXRD) to thin sections (≤30 µm thickness) of samples fixed or deposited on substrates are discussed. The principal characteristic of this technique is that the analysed micro-sized region of the thin section is illuminated through the substrate (tts-µXRD). Fields that can benefit from this are mineralogy, petrology and materials sciences since they often require in situ lateral studies to follow the evolution of crystalline phases or to determine new crystal structures in the case of phase transitions. The capability of tts-µXRD for performing structural studies with synchrotron radiation is shown by two examples. The first example is a test case in which tts-µXRD intensity data of pure aerinite are processed using Patterson-function direct methods to directly solve the crystal structure. In the second example, tts-µXRD is used to study the transformation of laumonite into a new aluminosilicate for which a crystal structure model is proposed.

20.
Anal Bioanal Chem ; 399(9): 3041-52, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21079931

RESUMEN

Altarpieces and polychrome carved wood from the fifteenth century AD usually exhibit golden and silvery areas by the application of a very thin foil of metal. The metal foils were normally protected from the atmosphere by a varnish or resin which maybe either preserved or absent. Moreover, they were glued to the background surface by adhesive substances (egg yolk, drying oil or animal glue). The high proportion of the glueing substances often renders the development of reaction compounds. With time, silver alters blacken or simply disappear completely. In this paper, we study the alterations to metal foils from a selection of fifteenth century artworks showing different glueing agents, organic coatings and several degrees of conservation of the organic coatings and metal leafs. The submillimetric layered structure and the high variability and low amount of most of the compounds present in the different layers, as well as their differing nature (organic and inorganic) make the use of micron-sensitive high-resolution techniques essential for their study. In particular, the high resolution, high brilliance and small footprint renders synchrotron radiation most adequate for their study. SR-XRD was performed to identify the reaction compounds formed in the different layers; µFTIR was used at to identify the silver protecting organic coatings, the metal foil glueing layers and the corresponding reaction compounds. The results obtained suggest that atmospheric corrosion is the dominant mechanism, and therefore that the degree of corrosion of the metal foils is mainly related to the conservation state of the protecting coatings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA