Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273555

RESUMEN

The process of stone formation in the human body remains incompletely understood, which requires clinical and laboratory studies and the formulation of a new endogenous, nanotechnological concept of the mechanism of origin and formation of crystallization centers. Previously, the mechanism of sialolithiasis was considered a congenital disease associated with the pathology of the ducts in the structure of the glands themselves. To date, such morphological changes of congenital nature can be considered from the position of the intrauterine formation of endogenous bacterial infections complicated by the migration of antigenic structures initiating the formation of crystallization centers. The present work is devoted to the study of the morphology and composition of stones obtained as a result of surgical interventions for sialolithiasis. Presumably, nanoparticles of metals and other chemical compounds can be structural components of crystallization centers or incorporated into the conditions of chronic endogenous inflammation and the composition of antigenic structures, in complexes with protein and bacterial components. X-ray microtomography, X-ray fluorescence analysis, scanning transmission electron microscopy and microanalysis, mass spectrometry, and Raman spectroscopy were used to study the pathogenesis of stone formation. Immunoglobulins (Igs) of classes A and G, as well as nanoparticles of metals Pb, Fe, Cr, and Mo, were found in the internal structure of the stones. The complex of antigenic structures was an ovoid calcified layered matrix of polyvid microbial biofilms, with the inclusion of metal nanoparticles and chemical elements, as well as immunoglobulins. The obtained results of clinical and laboratory studies allow us to broaden the view on the pathogenesis of stone formation and suggest that the occurrence of the calcification of antigenic structures may be associated with the formation of IgG4-associated disease.


Asunto(s)
Nanopartículas del Metal , Humanos , Nanopartículas del Metal/química , Cálculos de las Glándulas Salivales/patología , Cálculos de las Glándulas Salivales/metabolismo , Inmunoglobulina G/inmunología
2.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298627

RESUMEN

The emission of nanoscale particles from the surfaces of dental implants leads to the cumulative effect of particle complexes in the bone bed and surrounding soft tissues. Aspects of particle migration with the possibility of their involvement in the development of pathological processes of systemic nature remain unexplored. The aim of this work was to study protein production during the interaction of immunocompetent cells with nanoscale metal particles obtained from the surfaces of dental implants in the supernatants. The ability to migrate nanoscale metal particles with possible involvement in the formation of pathological structures, in particular in the formation of gallstones, was also investigated. The following methods were used: microbiological studies, X-ray microtomography, X-ray fluorescence analysis, flow cytometry, electron microscopy, dynamic light scattering, and multiplex immunofluorescence analysis. For the first time, titanium nanoparticles in gallstones were identified by X-ray fluorescence analysis and electron microscopy with elemental mapping. The multiplex analysis method revealed that the physiological response of the immune system cells, in particular neutrophils, to nanosized metal particles significantly reduced TNF-a production both through direct interaction and through double lipopolysaccharide-induced signaling. For the first time, a significant decrease in TNF-a production was demonstrated when supernatants containing nanoscale metal particles were co-cultured with proinflammatory peritoneal exudate obtained from the peritoneum of the C57Bl/6J inbred mice line for one day.


Asunto(s)
Implantes Dentales , Cálculos Biliares , Nanopartículas , Ratones , Animales , Propiedades de Superficie , Oseointegración , Titanio/química , Microscopía Electrónica de Rastreo
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768589

RESUMEN

The role of metallic nano- and microparticles in the development of inflammation has not yet been investigated. Soft tissue biopsy specimens of the bone bed taken during surgical revisions, as well as supernatants obtained from the surface of the orthopedic structures and dental implants (control), were examined. Investigations were performed using X-ray microtomography, X-ray fluorescence analysis, and scanning electron microscopy. Histological studies of the bone bed tissues were performed. Nanoscale and microscale metallic particles were identified as participants in the inflammatory process in tissues. Supernatants containing nanoscale particles were obtained from the surfaces of 20 units of new dental implants. Early and late apoptosis and necrosis of immunocompetent cells after co-culture and induction by lipopolysaccharide and human venous blood serum were studied in an experiment with staging on the THP-1 (human monocytic) cell line using visualizing cytometry. As a result, it was found that nano- and microparticles emitted from the surface of the oxide layer of medical devices impregnated soft tissue biopsy specimens. By using different methods to analyze the cell-molecule interactions of nano- and microparticles both from a clinical perspective and an experimental research perspective, the possibility of forming a chronic immunopathological endogenous inflammatory process with an autoimmune component in the tissues was revealed.


Asunto(s)
Implantes Dentales , Humanos , Microscopía Electrónica de Rastreo , Monocitos , Línea Celular , Titanio/análisis , Propiedades de Superficie
4.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555457

RESUMEN

The purpose of this study was to provide an immuno-mediated substantiation of the etiopathogenesis of mucositis and peri-implantitis based on the results of experimental, laboratory and clinical studies. The biopsy material was studied to identify impregnated nanoscale and microscale particles in the structure of pathological tissues by using X-ray microtomography and X-ray fluorescence analyses. Electron microscopy with energy-dispersive analysis identified the composition of supernatants containing nanoscale metal particles obtained from the surfaces of dental implants. The parameters of the nanoscale particles were determined by dynamic light scattering. Flow cytometry was used to study the effect of nanoscale particles on the ability to induce the activation and apoptosis of immunocompetent cells depending on the particles' concentrations during cultivation with the monocytic cell line THP-1 with the addition of inductors. An analysis of the laboratory results suggested the presence of dose-dependent activation, as well as early and late apoptosis of the immunocompetent cells. Activation and early and late apoptosis of a monocytic cell line when THP-1 was co-cultured with nanoscale metal particles in supernatants were shown for the first time. When human venous blood plasma was added, both activation and early and late apoptosis had a dose-dependent effect and differed from those of the control groups.


Asunto(s)
Implantes Dentales , Mucositis , Periimplantitis , Humanos , Periimplantitis/metabolismo , Inflamación
5.
Dent Mater ; 38(6): 924-934, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35289284

RESUMEN

OBJECTIVES: To study the oxide layer stability of certified dental implants of system "P", made based on TiO2 alloy with carbon coating. To perform a comparative statistical analysis of the obtained data with the available data for the dental implants of systems "A" and "B". METHODS: X-ray microtomography and X-ray fluorescence analysis were used to study soft tissue biopsy specimens. Supernatants were studied by dynamic light scattering and transmission electron microscopy when simulating free emission of nanoscale metal oxide particles from the surface of dental implants as well as when simulating physical loading. A comparative analysis of three parameters of nanoscale particles was performed by statistical data analysis. The surface of the "P" system dental implant with surface treatment was analyzed by scanning electron microscopy. RESULTS: Both free emission of nanoscale oxide layer particles and yield of nano- and microscale particles during simulation of physical load were confirmed. Statistically significant differences were noted in a comparative analysis of the size and frequency of occurrence of these particles in the supernatants obtained from the surfaces of three dental implant systems. The elemental composition of the particles and the composition and structure of the "P" system dental implants themselves were analyzed. SIGNIFICANCE: The developed method of dynamic light scattering can be used to compare the stability of the oxide layer of standardized medical products manufactured on the basis of the TiO2 alloy.


Asunto(s)
Implantes Dentales , Aleaciones , Microscopía Electrónica de Rastreo , Óxidos , Propiedades de Superficie , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA