RESUMEN
Meat products containing Vitamin D3 (VD3) are an innovative option that could contribute to reducing deficiencies in this micronutrient. Designing nanoemulsions that carry VD3 is the first step in developing functional meat products. Thereby, this study investigated the impact of food components on the nanoemulsion properties. A central composite design was used to study the effects of pea protein (PP, 0.5-2.5%), safflower oil (SO, 5-15%), and salt (0-0.5%) on the nanoemulsion stability (ζ-potential and particle size) and the VD3 retention. Also, the optimized nanoemulsion carrying VD3 was incorporated into a meat matrix to study its retention after cooking. The combination of food components in the optimized nanoemulsion were SO = 9.12%, PP = 1.54%, and salt content = 0.4%, resulting in the predicted values of ζ-potential, particle size, and VD3 retention of -37.76 mV, 485 nm, and 55.1%, respectively. The VD3 that was nanoencapsulated and included in a meat product remained more stable after cooking than the VD3 that was not encapsulated. If a meat product is formulated with 5 or 10% safflower oil, the stability of the nanoencapsulated VD3 is reduced. This research contributes to developing functional meat products carrying nanoencapsulated vitamin D3 in natural food-grade components.
RESUMEN
Galactomannans (GM) are hemicellulosic polysaccharides composed of D-mannopyranose chains linked by ß (1 â 4) glycosidic linkages with branches of D-galactopyranose linked by α (1 â 6) linkages. This polysaccharide is recognized for its hydrophilic character, as it is rich in hydroxyl groups (-OH). This chemical characteristic, combined with the absence of ionic charges, enables structural modifications such as transesterification of the fatty acid chains (FA), which provides a strategy for obtaining amphiphilic structures. The enzyme-catalyzed syntheses were carried out in DMSO with GM decanoate (GMD) and GM palmitate (GMP) at different molar ratios (0.5 and 1.0) and the resulting structures were evaluated with infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (CP/MAS 13C NMR) and differential scanning calorimetry (DSC). The FTIR spectrum confirmed the transesterification of GM with the appearance of a C[bond, double bond]O band (1730-1750 cm-1). These results were confirmed by the signals observed at 177 and 30 ppm in the CP/MAS 13C NMR spectrum, which corresponded to the C[bond, double bond]O groups of the esters and the terminal -CH3 groups of the FA chains, respectively. Finally, DSC showed glass transition temperatures (Tg) in the range 43-51 °C, while the melting temperatures (Tm) of the GM esters (59 °C) were not affected by different degrees of esterification (DE) for GMD (0.37 and 0.71) and GMP (0.47 and 0.57).
RESUMEN
Arabinoxylans (AX) microcapsules loaded with insulin were prepared by enzymatic gelation of AX, using a triaxial electrospray method. The microcapsules presented a spherical shape, with an average size of 250 µm. The behavior of AX microcapsules was evaluated using a simulator of the human intestinal microbial ecosystem. AX microcapsules were mainly (70%) degraded in the ascending colon. The fermentation was completed in the descending colon, increasing the production of acetic, propionic, and butyric acids. In the three regions of the colon, the fermentation of AX microcapsules significantly increased populations of Bifidobacterium and Lactobacillus and decreased the population of Enterobacteriaceae. In addition, the results found in this in vitro model showed that the AX microcapsules could resist the simulated conditions of the upper gastrointestinal system and be a carrier for insulin delivery to the colon. The pharmacological activity of insulin-loaded AX microcapsules was evaluated after oral delivery in diabetic rats. AX microcapsules lowered the serum glucose levels in diabetic rats by 75%, with insulin doses of 25 and 50 IU/kg. The hypoglycemic effect and the insulin levels remained for more than 48 h. Oral relative bioavailability was 13 and 8.7% for the 25 and 50 IU/kg doses, respectively. These results indicate that AX microcapsules are a promising microbiota-activated system for oral insulin delivery in the colon.
RESUMEN
Ferulated polysaccharides such as pectin and arabinoxylan form covalent gels which are attractive for drug delivery or cell immobilization. Saccharomyces boulardii is a probiotic yeast known for providing humans with health benefits; however, its application is limited by viability loss under environmental stress. In this study, ferulated pectin from sugar beet solid waste (SBWP) and ferulated arabinoxylan from maize bioethanol waste (AX) were used to form a covalent mixed gel, which was in turn used to entrap S. boulardii (2.08 × 108 cells/mL) in microbeads using electrospray. SBWP presented a low degree of esterification (30%), which allowed gelation through Ca2+, making it possible to reduce microbead aggregation and coalescence by curing the particles in a 2% CaCl2 cross-linking solution. SBWP/AX and SBWP/AX+ S. boulardii microbeads presented a diameter of 214 and 344 µm, respectively, and a covalent cross-linking content (dimers di-FA and trimer tri-FA of ferulic acid) of 1.15 mg/g polysaccharide. The 8-5', 8-O-4'and 5-5'di-FA isomers proportions were 79%, 18%, and 3%, respectively. Confocal laser scanning microscopy images of propidium iodide-stained yeasts confirmed cell viability before and after microbeads preparation by electrospray. SBWP/AX capability to entrap S. boulardii would represent an alternative for probiotic immobilization in tailored biomaterials and an opportunity for sustainable waste upcycling to value-added products.
Asunto(s)
Pectinas/química , Saccharomyces boulardii/aislamiento & purificación , Xilanos/química , Portadores de Fármacos/química , Lacasa/metabolismoRESUMEN
RESUMEN Los arabinoxilanos son polisacáridos presentes en los granos de los cereales, y como tales, forman parte de la fibra dietética consumida por humanos y animales. La hidrólisis química o enzimática de los arabinoxilanos produce arabinoxilo-oligosacáridos, los cuales pueden estar ramificados o no, con arabinosa. El objetivo de este trabajo fue exponer el uso potencial de los arabinoxilanos y arabinoxilo-oligosacáridos, como prebióticos, y el efecto de su consumo en la promoción de la buena salud, al estimular selectivamente el crecimiento y actividad metabólica de la microbiótica colónica benéfica. La información generada indica que los arabinoxilanos y arabinoxilo-oligosacáridos actúan modificando la microbiota de manera selectiva, y estimulan la respuesta biológica, favoreciendo la buena salud del hospedero, por su efecto antiobesogénico, regulador de la glucosa, antioxidante, anticancerígeno e inmunomodulador, con resultados similares o mejores en relación a prebióticos reconocidos. No obstante, es necesario ampliar el conocimiento que se tiene de ellos para sustentar su aplicación en la industria alimentaria, farmacéutica o biomédica.
ABSTRACT Arabinoxylans are polysaccharides present in grains and as such, are part of dietary fiber intake in humans and animals. Enzymatic or chemical hydrolysis of arabinoxylans produces arabinoxilo-oligosaccharides, which can be branched or unbranched with arabinose. The objective of this work was to describe the potential use of arabinoxylans and arabinoxylan-oligosaccharides as prebiotics to promote good health, by selective enhancement of beneficial colonic microbiota growth and metabolic activity. The information generated indicates that arabinoxylans and arabinoxylan-oligosaccharides act by modifying the microbiota selectively and stimulate the biological response favoring good health in the host, by antio-obesity effect, glucose regulator, antioxidant, anticancer, immunomodulator, with similar or better results than recognized prebiotics. However, it is necessary to expand the knowledge we have about arabinoxylans in order to support their application in the food, pharmaceutical, and biomedical industry.
RESUMEN
BACKGROUND: Arabinoxylans (AX) are polysaccharides consisting of a backbone of xyloses with arabinose substituents ester-linked to ferulic acid (FA). The arabinose to xylose ratio (A/X) in AX may vary from 0.3 to 1.1. AX form covalent gels by cross-linking of FA but physical interactions between AX chains also contribute to the network formation. The present study aimed to investigate the rheological and microstructural characteristics of gels based on AX enzymatically modified in A/X. RESULTS: Tailored AX presented A/X ranging from 0.68 to 0.51 and formed covalent gels. Dimers of FA content and elasticity (G') increased from 0.31 to 0.39 g kg-1 AX and from 106 to 164 Pa when the A/X in the polysaccharide decreased from 0.68 to 0.51. Atomic force microscopy images of AX gels showed a sponge-like microstructure at A/X = 0.68, whereas, at lower values, gels presented a more compact microstructure. Scanning electron microscopy analysis of AX gels show an arrangement of different morphology, passing from an imperfect honeycomb (A/X = 0.68) to a flake-like microstructure (A/X = 0.51). CONCLUSION: Lower A/X values favor the aggregation of AX chains resulting in an increase in di-FA content, which improves the rheological and microstructural characteristics of the gel formed. © 2017 Society of Chemical Industry.
Asunto(s)
Arabinosa/química , Extractos Vegetales/química , Triticum/química , Xilanos/química , Xilosa/química , Biocatálisis , Elasticidad , Manipulación de Alimentos , Geles/química , Glicósido Hidrolasas/química , Lacasa , Reología , ViscosidadRESUMEN
Chitosan aerogels conjugates the characteristics of nanostructured porous materials, i.e., extended specific surface area and nano scale porosity, with the remarkable functional properties of chitosan. Aerogels were obtained from solutions of chitosan in ionic liquids (ILs), 1-butyl-3-methylimidazolium acetate (BMIMAc), and 1-ethyl-3-methyl-imidazolium acetate (EMIMAc), in order to observe the effect of the solvent in the structural characteristics of this type of materials. The process of elaboration of aerogels comprised the formation of physical gels through anti-solvent vapor diffusion, liquid phase exchange, and supercritical CO2 drying. The aerogels maintained the chemical identity of chitosan according to Fourier transform infrared spectrophotometer (FT-IR) spectroscopy, indicating the presence of their characteristic functional groups. The internal structure of the obtained aerogels appears as porous aggregated networks in microscopy images. The obtained materials have specific surface areas over 350 m²/g and can be considered mesoporous. According to swelling experiments, the chitosan aerogels could absorb between three and six times their weight of water. However, the swelling and diffusion coefficient decreased at higher temperatures. The structural characteristics of chitosan aerogels that are obtained from ionic liquids are distinctive and could be related to solvation dynamic at the initial state.
RESUMEN
Arabinoxylans (AXs) with high ferulic acid (FA) content (7.18 µg/mg AXs) were cross-linked using laccase. Storage (G') modulus of AX solutions at 1% (AX-1) and 2% (AX-2) (w/v) registered maximum values of 409 Pa and 889 Pa at 180 min and 83 min, respectively. Atomic force microscopy revealed the grained and irregular surface of the AX-1 gel and the smoother surface without significant depressions of the AX-2 gel. Cured AX gels exhibited a liquid phase surrounding the samples indicating syneresis. The syneresis ratio percentage (% Rs) of the gels was registered over time reaching stabilization at 20 h. The % Rs was not significantly different between AX-1 (60.0%) and AX-2 (62.8%) gels. After 20 h of syneresis development, the dimers of the FA in the AX-1 and AX-2 gels significantly increased by 9% and 78%, respectively; moreover, the trimers of the FA in the AX-1 and AX-2 gels, by 94% and 300%, respectively. Scanning electron microscopy showed that, after syneresis stabilization, AX gels presented a more compact microstructure. Syneresis development in the gels of highly ferulated AXs could be related to the polymer network contraction due to the additional formation of dimers and trimers of the FA (cross-linking structures), which may act like a "zipping" process, increasing the polymer chains' connectivity.
RESUMEN
Due to their porous structure, aqueous environment and dietary fiber nature arabinoxylan (AX) gels could have potential applications for colon-specific therapeutic molecule delivery. In addition, prebiotic and health related effects of AX have been previously demonstrated. It has been also reported that cross-linked AX can be degraded by bacteria from the intestinal microbiota. However, AX gels have not been abundantly studied as carrier systems and there is no information available concerning their capability to entrap cells. In this regard, probiotic bacteria such as Bifidobacterium longum have been the focus of intense research activity lately. The objective of this research was to investigate the entrapment of probiotic B. longum in AX gels. AX solution at 2% (w/v) containing B. longum (1 × 107 CFU/cm) formed gels induced by laccase as cross-linking agent. The entrapment of B. longum decreased gel elasticity from 31 to 23 Pa, probably by affecting the physical interactions taking place between WEAX chains. Images of AX gels containing B. longum viewed under a scanning electron microscope show the gel network with the bacterial cells entrapped inside. The microstructure of these gels resembles that of an imperfect honeycomb. The results suggest that AX gels can be potential candidates for the entrapment of probiotics.
Asunto(s)
Geles/química , Probióticos/química , Xilanos/química , Fenómenos Mecánicos , Microscopía Electrónica de Rastreo , ReologíaRESUMEN
The oxidative gelation of maize bran arabinoxylans (MBAX) using a peroxidase/H(2)O(2) system as a free radical-generating agent was investigated. The peroxidase/H(2)O(2) system led to the formation of dimers and trimer of ferulic acid as covalent cross-link structures in the MBAX network. MBAX gels at 4% (w/v) presented a storage modulus of 180 Pa. The structural parameters of MBAX gels were calculated from swelling experiments. MBAX gels presented a molecular weight between two cross-links (Mc), a cross-linking density (ρ(c)) and a mesh size (x) of 49 × 103 g/mol, 30 × 10-6 mol/cm3 and 193 nm, respectively.
Asunto(s)
Radicales Libres/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidasa/metabolismo , Xilanos/metabolismo , Zea mays/metabolismo , Ácidos Cumáricos , Geles/química , Oxidación-Reducción , Xilanos/química , Xilanos/ultraestructura , Zea mays/química , Zea mays/ultraestructuraRESUMEN
Structural and physicochemical characteristics of mesquite gum (from Prosopis velutina) were investigated using FT-IR spectroscopic, mass spectrometric and chromatographic methods. Four fractions (F-I, F-IIa, F-IIb and F-III) were isolated by hydrophobic interaction chromatography. The samples were characterized and analyzed for their monosaccharide and oligomers composition by high performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). L-Arabinose (L-Ara) and D-galactose (D-Gal) were found as the main carbohydrate constituent residues in the polysaccharides from mesquite gum and their ratio (L-Ara/D-Gal) varied within the range 2.54 to 3.06 among the various fractions. Small amounts of D-glucose (D-Glc), D-mannose (D-Man) and D-xylose (D-Xyl) were also detected, particularly in Fractions IIa, IIb and III. Infrared spectroscopy identified polysaccharides and protein in all the samples. Data from mass spectrometry (MALDI-TOF MS) was consistent with the idea that the structure corresponding to the periphereal chains of Fraction I is predominantly a chain of pentoses attached to uronic acid.
Asunto(s)
Hexosas/análisis , Gomas de Plantas/análisis , Prosopis/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodosRESUMEN
Mesquite gum sourced from Prosopis velutina trees and gum arabic (Acacia spp.) were characterized using light scattering and Langmuir isotherms. Both gum materials were fractionated by hydrophobic interaction chromatography, yielding four fractions for both gums: FI, FIIa, FIIb and FIII in mesquite gum and FI, FII, FIIIa and FIIIb in gum arabic. In mesquite gum, the obtained fractions had different protein content (7.18-38.60 wt.-%) and macromolecular dimensions (M approximately 3.89 x 10(5)-8.06 x 10(5) g.mol(-1), RG approximately 48.83-71.11 nm, RH approximately 9.61-24.06 nm) and architecture given by the structure factor (RG/RH ratio approximately 2.96-5.27). The mechanical properties of Langmuir monolayers at the air-water interface were very different on each gum and their fractions. For mesquite gum, the most active species at the interface were those comprised in Fractions IIa and IIb and III, while Fraction I the pi/A isotherm lied below that of the whole gum. In gum arabic only Fraction III developed greater surface pressure at the same surface per milligram of material than whole gum. This is rationalized in terms of structural differences in both materials. Mesquite gum tertiary structure seems to fit best with an elongated polydisperse macrocoil in agreement with the "twisted hairy rope" proposal for arabinogalactan proteoglycans.