Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 100(Pt 3): 423-434, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28964365

RESUMEN

Mango industry processing generates high quantities of mango by-products such as peels and seeds (35%-60% of the fruit). Indeed, it is known that mango and its by-products contain different families of bioactive compounds that possess several health benefits. Thus, the aim of this study has been the determination of different families of phenolic derivatives (free and bound phenolic compounds and alk(en)ylresorcinols (ARs)) in mango edible part and its by-products (peel, seed and seed husk) from three different cultivars. This is the first study that evaluates the phenolic compounds and ARs in the four fractions of mango of three different cultivars. Special attention has been paid to the determination of anthocyanins and ARs, because these families of compounds had not been studied in depth in mango. In fact, petunidin rutinoside-(p-coumaric acid) gallate was found in mango pulp, peel, seed and seed husk of the three cultivars and, it had never been described in mango before. It is also important to highlight that this is the first time that the identification and quantification of ARs have been performed in mango seed and seed husk; besides, four and five out of eleven alk(en)ylresorcinols detected in peel and pulp, respectively, were identified for the first time in these mango fractions. Furthermore, antioxidant activity was measured by ABTS and FRAP assays. Seed free and bound phenolic extracts showed the highest antioxidant capacity.


Asunto(s)
Frutas/química , Mangifera/química , Fenoles/análisis , Extractos Vegetales/análisis , Antioxidantes/análisis , Antioxidantes/química , Cromatografía de Gases/métodos , Cromatografía Líquida de Alta Presión/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Fenoles/química , Extractos Vegetales/química , Semillas/química
2.
Int J Mol Sci ; 18(7)2017 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-28737686

RESUMEN

Two different gas chromatography coupled to quadrupole-time of flight mass spectrometry (GC-QTOF-MS) methodologies were carried out for the analysis of phytosterols and tocopherols in the flesh of three mango cultivars and their by-products (pulp, peel, and seed). To that end, a non-polar column ((5%-phenyl)-methylpolysiloxane (HP-5ms)) and a mid-polar column (crossbond trifluoropropylmethyl polysiloxane (RTX-200MS)) were used. The analysis time for RTX-200MS was much lower than the one obtained with HP-5ms. Furthermore, the optimized method for the RTX-200MS column had a higher sensibility and precision of peak area than the HP-5ms methodology. However, RTX-200MS produced an overlapping between ß-sitosterol and Δ5-avenasterol. Four phytosterols and two tocopherols were identified in mango samples. As far as we are concerned, this is the first time that phytosterols have been studied in mango peel and that Δ5-avenasterol has been reported in mango pulp. α- and γ-tocopherol were determined in peel, and α-tocopherol was the major tocopherol in this fraction (up to 81.2%); however, only α-tocopherol was determined in the pulp and seed. The peel was the fraction with the highest total concentration of phytosterols followed by seed and pulp, and "Sensación" was the cultivar with the highest concentration of total phytosterols in most cases. There were no significant differences between quantification of tocopherols with both columns. However, in most cases, quantification of phytosterols was higher with RTX-200MS than with HP-5ms column.


Asunto(s)
Mangifera/química , Fitosteroles/análisis , Semillas/química , Tocoferoles/análisis , Cromatografía Liquida , Mangifera/metabolismo , Fitosteroles/metabolismo , Semillas/metabolismo , Tocoferoles/metabolismo
3.
Electrophoresis ; 37(7-8): 1072-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26703086

RESUMEN

Free and bound phenolic and other polar compounds in mango edible fraction and its by-products (peel, seed, and seed husk) have been determined by HPLC-DAD-ESI-qTOF-MS. This analytical technique has demonstrated to be a valuable platform for the identification and quantification of these compounds in mango. In fact, UV-Vis and mass spectra data allowed the determination of 91 free compounds and 13 bound (cell wall linked) compounds taking into account the four fractions of mango. To our knowledge, this is the first time that mango seed husk has been studied regarding its phenolic compounds. The method proposed showed LODs between 0.006 and 0.85 µg/mL and accuracy ranged from 94.8 and 100.7%. Mango peel presented the highest concentration of free polar compounds followed by seed, pulp, and seed husk. It is also important to highlight that bound phenolic compounds had never been determined in mango pulp, seed, and seed husk before. Furthermore, ellagic acid was the most abundant bound compound in the four mango fractions analyzed. These results show that mango pulp and its by-products are a good source of phenolic and other polar compounds. In particular, mango seed contains a high total concentration of ellagic acid (650 mg/100 g dry weight).


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Frutas/química , Mangifera/química , Fenoles/análisis , Semillas/química , Límite de Detección , Espectrometría de Masas , Fenoles/química , Extractos Vegetales/análisis , Extractos Vegetales/química , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA