Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 6(6): 4440-4447, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33644556

RESUMEN

We study the structural, electronic, and magnetic properties of the antiferromagnetic-layered oxyarsenide (LaO)MnAs system from the first-principle calculation. The increasing Hubbard energy (U) in the Mn 3d orbital induces the increasing local-symmetry distortions (LSDs) in MnAs4 and OLa4 tetrahedra. The LSD in MnAs4 tetrahedra is possibly promoted by the second-order Jahn-Teller effect in the Mn 3d orbital. Furthermore, the increasing U also escalates the bandgap (E g) and the magnetic moment of Mn (µMn). The value of U = 1 eV is the most appropriate by considering the structural properties. This value leads to E g and µMn of 0.834 eV and 4.31 µB, respectively. The calculated µMn is lower than the theoretical value for the high-spin state of Mn 3d (5 µB) due to the hybridization between Mn 3d and As 4p states. However, d xy states are localized and show the weakest hybridization with valence As 4p states. The Mott-insulating behavior in the system is characterized by the E g transition between the valence and conduction d zx /d zy states. This work shows new physical insights for advanced functional device applications, such as spintronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA