Revisiting the Structural, Electronic, and Magnetic Properties of (LaO)MnAs: Effect of Hubbard Correction and Origin of Mott-Insulating Behavior.
ACS Omega
; 6(6): 4440-4447, 2021 Feb 16.
Article
en En
| MEDLINE
| ID: mdl-33644556
We study the structural, electronic, and magnetic properties of the antiferromagnetic-layered oxyarsenide (LaO)MnAs system from the first-principle calculation. The increasing Hubbard energy (U) in the Mn 3d orbital induces the increasing local-symmetry distortions (LSDs) in MnAs4 and OLa4 tetrahedra. The LSD in MnAs4 tetrahedra is possibly promoted by the second-order Jahn-Teller effect in the Mn 3d orbital. Furthermore, the increasing U also escalates the bandgap (E g) and the magnetic moment of Mn (µMn). The value of U = 1 eV is the most appropriate by considering the structural properties. This value leads to E g and µMn of 0.834 eV and 4.31 µB, respectively. The calculated µMn is lower than the theoretical value for the high-spin state of Mn 3d (5 µB) due to the hybridization between Mn 3d and As 4p states. However, d xy states are localized and show the weakest hybridization with valence As 4p states. The Mott-insulating behavior in the system is characterized by the E g transition between the valence and conduction d zx /d zy states. This work shows new physical insights for advanced functional device applications, such as spintronics.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Omega
Año:
2021
Tipo del documento:
Article
País de afiliación:
Indonesia
Pais de publicación:
Estados Unidos