Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 32(4): 430-436, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35283429

RESUMEN

Platycosides, Platycodi radix (Platycodon grandiflorus root) saponins, are used as food supplements and exert diverse pharmacological activities. Deglycosylation of saponins enhances their biological efficacy, and deglycosylated platycosides are produced mainly through enzymatic hydrolysis. However, the types of available deglycosylated platycosides remain limited because of a lack of hydrolyzing enzymes that can act on specific glycosides in glycosylated platycosides. In this study, a crude enzyme from Aspergillus tubingensis converted platycoside E (PE) and polygalacin D3 (PGD3) into deglucose-apiose-xylosylated (deGAX)-platycodin D (PD) and deGAX-polygalacin D (PGD), respectively. The products were identified through LC/MS analysis by specifically hydrolyzing all glucose residues at C-3, and apiose and xylose residues at C-28 of platycoside. The hydrolytic activity of the crude enzyme obtained after the cultivation of the fungus using citrus pectin and corn steep solid as carbon and nitrogen sources, respectively, in culture medium was increased compared with those using other carbon and nitrogen sources. The crude enzyme from A. tubingensis was the most effective in producing deGAX platycoside at pH 5.0 and 60°C. The crude enzyme produced 0.32 mg/ml deGAX-PD and 0.34 mg/ml deGAX-PGD from 1 mg/ml PE and 1 mg/ml PGD3 (at pH 5.0 and 60°C) for 12 and 10 h, with productivities of 32.0 and 42.5 mg/l/h and molar yields of 62.1 and 59.6%, respectively. To the best of our knowledge, this is the first study to produce deGAX platycosides from glycosylated platycosides.


Asunto(s)
Platycodon , Saponinas , Aspergillus , Carbono , Nitrógeno , Pentosas , Platycodon/química , Saponinas/química
2.
J Agric Food Chem ; 69(16): 4766-4777, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33852306

RESUMEN

Extract from balloon flower root (Platycodi radix) containing platycosides as saponins is a beneficial food additive and is used for their savory taste and the alleviation of respiratory diseases. Deglycosylated platycosides show greater pharmacological effects than glycosylated platycosides. However, there are no reports on the conversion of glycosylated platycosides into deapiosylated platycosides. In this study, we showed that the crude enzyme from Rhizopus oryzae, a generally recognized as safe (GRAS) fungus isolated from meju (fermented soybean brick), completely converted glycosylated platycosides in Platycodi radix extract into deapiosylated platycosides: deapiosylated platycodin D (deapi-PD), deapiosylated platycodin A (deapi-PA), deapiosylated polygalacin D (deapi-PGD), and deapiosylated platyconic acid A (deapi-PCA). Among these, deapi-PA and deapi-PCA were first identified using liquid chromatography/mass spectrometry. The anti-inflammatory and antioxidant effects of deapiosylated platycosides were greater than those of the precursor glycosylated platycosides. These deapiosylated platycosides could improve the properties of functional food additives.


Asunto(s)
Ácido Oleanólico , Platycodon , Saponinas , Hongos , Glicosilación , Rhizopus , Rhizopus oryzae
3.
Int J Mol Sci ; 20(16)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394870

RESUMEN

Platycodin D (PD), a major saponin (platycoside) in Platycodi radix (balloon flower root), has higher pharmacological activity than the other major platycosides; however, its content in the plant root is only approximately 10% (w/w) and the productivities of PD by several enzymes are still too low for industrial applications. To rapidly increase the total PD content, the ß-glucosidase from Caldicellulosiruptor bescii was used for the deglucosylation of the PD precursors platycoside E (PE) and platycodin D3 (PD3) in the root extract into PD. Under the optimized reaction conditions, the enzyme completely converted the PD precursors into PD with the highest productivity reported so far, increasing the total PD content to 48% (w/w). In the biotransformation process, the platycosides in Platycodi radix were hydrolyzed by four pathways: deapiosylated (deapi)-PE → deapi-PD3 → deapi-PD, PE → PD3 → PD, polygalacin D3 → polygalacin D, and 3″-O-acetyl polygalacin D3 → 3″-O-acetyl polygalacin D.


Asunto(s)
Biotransformación , Firmicutes/metabolismo , Raíces de Plantas/metabolismo , Platycodon/metabolismo , Saponinas/metabolismo , Triterpenos/metabolismo , beta-Glucosidasa/metabolismo , Caldicellulosiruptor , Hidrólisis , Redes y Vías Metabólicas , Estructura Molecular , Saponinas/química , Especificidad por Sustrato , Triterpenos/química , beta-Glucosidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA