Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS J ; 290(24): 5744-5758, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37592814

RESUMEN

Errors made by DNA polymerases contribute to both natural variation and, in extreme cases, genome instability and its associated diseases. Recently, the importance of polymerase misincorporation in disease has been highlighted by the identification of cancer-associated polymerase variants with mutations in the exonuclease domain. A subgroup of these variants have a hypermutation phenotype in tumours, and when modelled in yeast, they show mutation rates in excess of that seen with polymerase with simple loss of proofreading activity. We have developed a bypass assay to rapidly determine the tendency of a polymerase to misincorporate in vitro. We have used the assay to compare misincorporation by wild-type, exonuclease-defective and two hypermutating human DNA polymerase ε variants, P286R and V411L. The assay clearly distinguished between the misincorporation rates of wild-type, exonuclease dead and P286R polymerases. However, the V411L polymerase showed misincorporation rate comparable to the exonuclease dead enzyme rather than P286R, suggesting that there may be some differences in the way that these variants cause hypermutation. Using this assay, misincorporation opposite a templated C nucleotide was consistently higher than for other nucleotides, and this caused predominantly C-to-T transitions. This is consistent with the observation that C-to-T transitions are commonly seen in DNA polymerase ε mutant tumours.


Asunto(s)
ADN Polimerasa II , Neoplasias , Humanos , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Mutación , Neoplasias/genética , Exonucleasas/genética , Exonucleasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Replicación del ADN/genética
2.
Nucleic Acids Res ; 51(7): 3205-3222, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36951111

RESUMEN

Chromosomal instability (CIN) drives cell-to-cell heterogeneity, and the development of genetic diseases, including cancer. Impaired homologous recombination (HR) has been implicated as a major driver of CIN, however, the underlying mechanism remains unclear. Using a fission yeast model system, we establish a common role for HR genes in suppressing DNA double-strand break (DSB)-induced CIN. Further, we show that an unrepaired single-ended DSB arising from failed HR repair or telomere loss is a potent driver of widespread CIN. Inherited chromosomes carrying a single-ended DSB are subject to cycles of DNA replication and extensive end-processing across successive cell divisions. These cycles are enabled by Cullin 3-mediated Chk1 loss and checkpoint adaptation. Subsequent propagation of unstable chromosomes carrying a single-ended DSB continues until transgenerational end-resection leads to fold-back inversion of single-stranded centromeric repeats and to stable chromosomal rearrangements, typically isochromosomes, or to chromosomal loss. These findings reveal a mechanism by which HR genes suppress CIN and how DNA breaks that persist through mitotic divisions propagate cell-to-cell heterogeneity in the resultant progeny.


Asunto(s)
Schizosaccharomyces , Humanos , Inestabilidad Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Homóloga , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
3.
PLoS One ; 18(1): e0271016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36626373

RESUMEN

We constructed a panel of S. pombe strains expressing DNA polymerase ε variants associated with cancer, specifically POLES297F, POLEV411L, POLEL424V, POLES459F, and used these to compare mutation rates determined by canavanine resistance with other selective methods. Canavanine-resistance mutation rates are broadly similar to those seen with reversion of the ade-485 mutation to adenine prototrophy, but lower than 5-fluoroorotic acid (FOA)-resistance rates (inactivation of ura4+ or ura5+ genes). Inactivation of several genes has been associated with canavanine resistance in S. pombe but surprisingly whole genome sequencing showed that 8/8 spontaneous canavanine-resistant mutants have an R175C mutation in the any1/arn1 gene. This gene encodes an α-arrestin-like protein involved in mediating Pub1 ubiquitylation of target proteins, and the phenotypic resistance to canavanine by this single mutation is similar to that shown by the original "can1-1" strain, which also has the any1R175C mutation. Some of the spontaneous mutants have additional mutations in arginine transporters, suggesting that this may marginally increase resistance to canavanine. The any1R175C strain showed internalisation of the Cat1 arginine transporter as previously reported, explaining the canavanine-resistance phenotype.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Canavanina/farmacología , Canavanina/metabolismo , Tasa de Mutación , Proteínas de Schizosaccharomyces pombe/metabolismo , Mutación , Arginina/metabolismo , Arrestinas/metabolismo
4.
Fam Cancer ; 21(2): 197-209, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33948826

RESUMEN

Pathogenic germline exonuclease domain (ED) variants of POLE and POLD1 cause the Mendelian dominant condition polymerase proof-reading associated polyposis (PPAP). We aimed to describe the clinical features of all PPAP patients with probably pathogenic variants. We identified patients with a variants mapping to the EDs of POLE or POLD1 from cancer genetics clinics, a colorectal cancer (CRC) clinical trial, and systematic review of the literature. We used multiple evidence sources to separate ED variants into those with strong evidence of pathogenicity and those of uncertain importance. We performed quantitative analysis of the risk of CRC, colorectal adenomas, endometrial cancer or any cancer in the former group. 132 individuals carried a probably pathogenic ED variant (105 POLE, 27 POLD1). The earliest malignancy was colorectal cancer at 14. The most common tumour types were colorectal, followed by endometrial in POLD1 heterozygotes and duodenal in POLE heterozygotes. POLD1-mutant cases were at a significantly higher risk of endometrial cancer than POLE heterozygotes. Five individuals with a POLE pathogenic variant, but none with a POLD1 pathogenic variant, developed ovarian cancer. Nine patients with POLE pathogenic variants and one with a POLD1 pathogenic variant developed brain tumours. Our data provide important evidence for PPAP management. Colonoscopic surveillance is recommended from age 14 and upper-gastrointestinal surveillance from age 25. The management of other tumour risks remains uncertain, but surveillance should be considered. In the absence of strong genotype-phenotype associations, these recommendations should apply to all PPAP patients.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Endometriales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , ADN Polimerasa II/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/terapia , Femenino , Mutación de Línea Germinal , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/genética , Propilaminas
5.
PLoS Genet ; 17(7): e1009526, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228709

RESUMEN

Somatic and germline mutations in the proofreading domain of the replicative DNA polymerase ε (POLE-exonuclease domain mutations, POLE-EDMs) are frequently found in colorectal and endometrial cancers and, occasionally, in other tumours. POLE-associated cancers typically display hypermutation, and a unique mutational signature, with a predominance of C > A transversions in the context TCT and C > T transitions in the context TCG. To understand better the contribution of hypermutagenesis to tumour development, we have modelled the most recurrent POLE-EDM (POLE-P286R) in Schizosaccharomyces pombe. Whole-genome sequencing analysis revealed that the corresponding pol2-P287R allele also has a strong mutator effect in vivo, with a high frequency of base substitutions and relatively few indel mutations. The mutations are equally distributed across different genomic regions, but in the immediate vicinity there is an asymmetry in AT frequency. The most abundant base-pair changes are TCT > TAT transversions and, in contrast to human mutations, TCG > TTG transitions are not elevated, likely due to the absence of cytosine methylation in fission yeast. The pol2-P287R variant has an increased sensitivity to elevated dNTP levels and DNA damaging agents, and shows reduced viability on depletion of the Pfh1 helicase. In addition, S phase is aberrant and RPA foci are elevated, suggestive of ssDNA or DNA damage, and the pol2-P287R mutation is synthetically lethal with rad3 inactivation, indicative of checkpoint activation. Significantly, deletion of genes encoding some translesion synthesis polymerases, most notably Pol κ, partially suppresses pol2-P287R hypermutation, indicating that polymerase switching contributes to this phenotype.


Asunto(s)
ADN Polimerasa II/genética , Replicación del ADN , Mutación , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Quinasa de Punto de Control 2/genética , ADN Helicasas/genética , ADN Polimerasa II/metabolismo , Genoma Fúngico , Humanos , Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Fase S/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
J Cell Sci ; 132(6)2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30674555

RESUMEN

Replication stress is a common feature of cancer cells, and thus a potentially important therapeutic target. Here, we show that cyclin-dependent kinase (CDK)-induced replication stress, resulting from Wee1 inactivation, is synthetic lethal with mutations disrupting dNTP homeostasis in fission yeast. Wee1 inactivation leads to increased dNTP demand and replication stress through CDK-induced firing of dormant replication origins. Subsequent dNTP depletion leads to inefficient DNA replication, DNA damage and to genome instability. Cells respond to this replication stress by increasing dNTP supply through histone methyltransferase Set2-dependent MBF-induced expression of Cdc22, the catalytic subunit of ribonucleotide reductase (RNR). Disrupting dNTP synthesis following Wee1 inactivation, through abrogating Set2-dependent H3K36 tri-methylation or DNA integrity checkpoint inactivation results in critically low dNTP levels, replication collapse and cell death, which can be rescued by increasing dNTP levels. These findings support a 'dNTP supply and demand' model in which maintaining dNTP homeostasis is essential to prevent replication catastrophe in response to CDK-induced replication stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Nucleótidos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Replicación del ADN , Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Homeostasis , Metilación , Schizosaccharomyces/metabolismo , Mutaciones Letales Sintéticas , Factores de Transcripción/metabolismo
7.
Cell Rep ; 20(11): 2693-2705, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28903048

RESUMEN

Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Replicación del ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Puntos de Control del Ciclo Celular/genética , Daño del ADN/genética , Replicación del ADN/genética , ADN de Hongos/metabolismo , Regulación hacia Abajo/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación/genética , Nucleótidos/metabolismo , Origen de Réplica/genética , Fase S/genética
8.
Genes (Basel) ; 8(2)2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28146119

RESUMEN

A crucial factor in maintaining genome stability is establishing deoxynucleoside triphosphate (dNTP) levels within a range that is optimal for chromosomal replication. Since DNA replication is relevant to a wide range of other chromosomal activities, these may all be directly or indirectly affected when dNTP concentrations deviate from a physiologically normal range. The importance of understanding these consequences is relevant to genetic disorders that disturb dNTP levels, and strategies that inhibit dNTP synthesis in cancer chemotherapy and for treatment of other disorders. We review here how abnormal dNTP levels affect DNA replication and discuss the consequences for genome stability.

9.
Nat Rev Cancer ; 16(2): 71-81, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26822575

RESUMEN

Although it has long been recognized that the exonucleolytic proofreading activity intrinsic to the replicative DNA polymerases Pol δ and Pol ε is essential for faithful replication of DNA, evidence that defective DNA polymerase proofreading contributes to human malignancy has been limited. However, recent studies have shown that germline mutations in the proofreading domains of Pol δ and Pol ε predispose to cancer, and that somatic Pol ε proofreading domain mutations occur in multiple sporadic tumours, where they underlie a phenotype of 'ultramutation' and favourable prognosis. In this Review, we summarize the current understanding of the mechanisms and consequences of polymerase proofreading domain mutations in human malignancies, and highlight the potential utility of these variants as novel cancer biomarkers and therapeutic targets.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Mutación , Neoplasias/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Neoplasias Endometriales/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias/inmunología , Neoplasias/patología , Proteínas de Unión a Poli-ADP-Ribosa , Pronóstico , Saccharomyces cerevisiae/genética
10.
Fam Cancer ; 14(4): 621-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26251183

RESUMEN

Germline mutations in the exonuclease domain of POLE have been shown to predispose to colorectal cancers and adenomas. POLE is an enzyme involved in DNA repair and chromosomal DNA replication. In order to assess whether such mutations might also predispose to cutaneous melanoma, we interrogated whole-genome and exome data from probands of 34 melanoma families lacking pathogenic mutations in known high penetrance melanoma susceptibility genes: CDKN2A, CDK4, BAP1, TERT, POT1, ACD and TERF2IP. We found a novel germline mutation, POLE p.(Trp347Cys), in a 7-case cutaneous melanoma family. Functional assays in S. pombe showed that this mutation led to an increased DNA mutation rate comparable to that seen with a Pol ε mutant with no exonuclease activity. We then performed targeted sequencing of POLE in 1243 cutaneous melanoma cases and found that a further ten probands had novel or rare variants in the exonuclease domain of POLE. Although this frequency is not significantly higher than that in unselected Caucasian controls, we observed multiple cancer types in the melanoma families, suggesting that some germline POLE mutations may predispose to a broad spectrum of cancers, including melanoma. In addition, we found the first mutation outside the exonuclease domain, p.(Gln520Arg), in a family with an extensive history of colorectal cancer.


Asunto(s)
Biomarcadores de Tumor/genética , ADN Polimerasa II/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Melanoma/genética , Neoplasias Cutáneas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Melanoma/patología , Persona de Mediana Edad , Estadificación de Neoplasias , Linaje , Proteínas de Unión a Poli-ADP-Ribosa , Pronóstico , Neoplasias Cutáneas/patología , Adulto Joven , Melanoma Cutáneo Maligno
11.
PLoS One ; 9(11): e113325, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25409521

RESUMEN

Analysis of accumulation of repair and checkpoint proteins at repair sites in yeast nuclei has conventionally used chemical agents, ionizing radiation or induction of endonucleases to inflict localized damage. In addition to these methods, similar studies in mammalian cells have used laser irradiation, which has the advantage that damage is inflicted at a specific nuclear region and at a precise time, and this allows accurate kinetic analysis of protein accumulation at DNA damage sites. We show here that it is feasible to use short pulses of near-infrared laser irradiation to inflict DNA damage in subnuclear regions of yeast nuclei by multiphoton absorption. In conjunction with use of fluorescently-tagged proteins, this allows quantitative analysis of protein accumulation at damage sites within seconds of damage induction. PCNA accumulated at damage sites rapidly, such that maximum accumulation was seen approximately 50 s after damage, then levels declined linearly over 200-1000 s after irradiation. RPA accumulated with slower kinetics such that hardly any accumulation was detected within 60 s of irradiation, and levels subsequently increased linearly over the next 900 s, after which levels were approximately constant (up to ca. 2700 s) at the damage site. This approach complements existing methodologies to allow analysis of key damage sensors and chromatin modification changes occurring within seconds of damage inception.


Asunto(s)
Daño del ADN/efectos de la radiación , Rayos Láser , Schizosaccharomyces/genética , Núcleo Celular/metabolismo , Reparación del ADN , Histonas/metabolismo , Rayos Infrarrojos , Microscopía Confocal , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación A/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Imagen de Lapso de Tiempo
12.
Semin Cell Dev Biol ; 30: 97-103, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24704278

RESUMEN

Synthesis of deoxynucleoside triphosphates (dNTPs) is essential for both DNA replication and repair and a key step in this process is catalyzed by ribonucleotide reductases (RNRs), which reduce ribonucleotides (rNDPs) to their deoxy forms. Tight regulation of RNR is crucial for maintaining the correct levels of all four dNTPs, which is important for minimizing the mutation rate and avoiding genome instability. Although allosteric control of RNR was the first discovered mechanism involved in regulation of the enzyme, other controls have emerged in recent years. These include regulation of expression of RNR genes, proteolysis of RNR subunits, control of the cellular localization of the small RNR subunit, and regulation of RNR activity by small protein inhibitors. This review will focus on these additional mechanisms of control responsible for providing a balanced supply of dNTPs.


Asunto(s)
Reparación del ADN , Replicación del ADN , Ribonucleótido Reductasas/fisiología , Transporte Activo de Núcleo Celular , Animales , Ciclo Celular , Desoxirribonucleótidos/biosíntesis , Retroalimentación Fisiológica , Inestabilidad Genómica , Humanos
13.
Hum Mol Genet ; 22(14): 2820-8, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23528559

RESUMEN

Accurate duplication of DNA prior to cell division is essential to suppress mutagenesis and tumour development. The high fidelity of eukaryotic DNA replication is due to a combination of accurate incorporation of nucleotides into the nascent DNA strand by DNA polymerases, the recognition and removal of mispaired nucleotides (proofreading) by the exonuclease activity of DNA polymerases δ and ε, and post-replication surveillance and repair of newly synthesized DNA by the mismatch repair (MMR) apparatus. While the contribution of defective MMR to neoplasia is well recognized, evidence that faulty DNA polymerase activity is important in cancer development has been limited. We have recently shown that germline POLE and POLD1 exonuclease domain mutations (EDMs) predispose to colorectal cancer (CRC) and, in the latter case, to endometrial cancer (EC). Somatic POLE mutations also occur in 5-10% of sporadic CRCs and underlie a hypermutator, microsatellite-stable molecular phenotype. We hypothesized that sporadic ECs might also acquire somatic POLE and/or POLD1 mutations. Here, we have found that missense POLE EDMs with good evidence of pathogenic effects are present in 7% of a set of 173 endometrial cancers, although POLD1 EDMs are uncommon. The POLE mutations localized to highly conserved residues and were strongly predicted to affect proofreading. Consistent with this, POLE-mutant tumours were hypermutated, with a high frequency of base substitutions, and an especially large relative excess of G:C>T:A transversions. All POLE EDM tumours were microsatellite stable, suggesting that defects in either DNA proofreading or MMR provide alternative mechanisms to achieve genomic instability and tumourigenesis.


Asunto(s)
ADN Polimerasa III/genética , ADN Polimerasa II/genética , Neoplasias Endometriales/enzimología , Mutación , Adulto , Anciano , Secuencia de Aminoácidos , ADN Polimerasa II/química , ADN Polimerasa II/metabolismo , ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Neoplasias Endometriales/genética , Femenino , Mutación de Línea Germinal , Humanos , Repeticiones de Microsatélite , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas de Unión a Poli-ADP-Ribosa , Estructura Terciaria de Proteína , Alineación de Secuencia , Adulto Joven
14.
Mol Biol Cell ; 24(5): 578-87, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23303250

RESUMEN

Meiosis involves two successive rounds of chromosome segregation without an intervening S phase. Exit from meiosis I is distinct from mitotic exit, in that replication origins are not licensed by Mcm2-7 chromatin binding, but spindle disassembly occurs during a transient interphase-like state before meiosis II. The absence of licensing is assumed to explain the block to DNA replication, but this has not been formally tested. Here we attempt to subvert this block by expressing the licensing control factors Cdc18 and Cdt1 during the interval between meiotic nuclear divisions. Surprisingly, this leads only to a partial round of DNA replication, even when these factors are overexpressed and effect clear Mcm2-7 chromatin binding. Combining Cdc18 and Cdt1 expression with modulation of cyclin-dependent kinase activity, activation of Dbf4-dependent kinase, or deletion of the Spd1 inhibitor of ribonucleotide reductase has little additional effect on the extent of DNA replication. Single-molecule analysis indicates this partial round of replication results from inefficient progression of replication forks, and thus both initiation and elongation replication steps may be inhibited in late meiosis. In addition, DNA replication or damage during the meiosis I-II interval fails to arrest meiotic progress, suggesting absence of checkpoint regulation of meiosis II entry.


Asunto(s)
Replicación del ADN/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona , Segregación Cromosómica/genética , Proteínas de Unión al ADN/genética , Fosforilación , Ploidias , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
15.
Nat Genet ; 45(2): 136-44, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23263490

RESUMEN

Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.


Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN/genética , ADN Polimerasa III/genética , ADN Polimerasa II/genética , Replicación del ADN/genética , Modelos Moleculares , Exodesoxirribonucleasas/genética , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal/genética , Humanos , Repeticiones de Microsatélite/genética , Linaje , Proteínas de Unión a Poli-ADP-Ribosa , Schizosaccharomyces/genética , Análisis de Secuencia de ADN
16.
Curr Biol ; 22(8): 720-6, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22464192

RESUMEN

Synthesis of deoxynucleoside triphosphates (dNTPs) is required for both DNA replication and DNA repair and is catalyzed by ribonucleotide reductases (RNR), which convert ribonucleotides to their deoxy forms [1, 2]. Maintaining the correct levels of dNTPs for DNA synthesis is important for minimizing the mutation rate [3-7], and this is achieved by tight regulation of RNR [2, 8, 9]. In fission yeast, RNR is regulated in part by a small protein inhibitor, Spd1, which is degraded in S phase and after DNA damage to allow upregulation of dNTP supply [10-12]. Spd1 degradation is mediated by the activity of the CRL4(Cdt2) ubiquitin ligase complex [5, 13, 14]. This has been reported to be dependent on modulation of Cdt2 levels, which are cell cycle regulated, peaking in S phase, and which also increase after DNA damage in a checkpoint-dependent manner [7, 13]. We show here that Cdt2 level fluctuations are not sufficient to regulate Spd1 proteolysis and that the key step in this event is the interaction of Spd1 with the polymerase processivity factor proliferating cell nuclear antigen (PCNA), complexed onto DNA. This mechanism thus provides a direct link between DNA synthesis and RNR regulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/biosíntesis , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ribonucleótido Reductasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Datos de Secuencia Molecular , Mutación , Antígeno Nuclear de Célula en Proliferación/genética , Ribonucleótido Reductasas/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
17.
Methods ; 57(2): 227-33, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22504526

RESUMEN

The fission yeast Schizosaccharomyces pombe is a useful model for analysing DNA replication as genetic methods to allow conditional inactivation of relevant proteins can provide important information about S-phase execution. A number of strategies are available to allow regulation of protein level or activity but there are disadvantages specific to each method and this may have limitations for particular proteins or experiments. We have investigated the utility of the inducible hormone-binding domain (HBD) system, which has been described in other organisms but little used in fission yeast, for the creation of conditional-lethal replication mutants. In this method, proteins are tagged with HBD and can be regulated with ß-estradiol. In this article, we describe the application of this method in fission yeast, specifically with regard to analysis of the function of GINS, an essential component of the eukaryotic replicative helicase, the CMG complex.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Regulación hacia Abajo , Proteínas Recombinantes de Fusión/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Puntos de Control del Ciclo Celular/genética , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/biosíntesis , Replicación del ADN , Estradiol/farmacología , Estrógenos/farmacología , Expresión Génica/efectos de los fármacos , Fenotipo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Fase S/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/biosíntesis
18.
J Biol Chem ; 287(14): 11410-21, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22303007

RESUMEN

The E3 ubiquitin ligase Cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) is emerging as an important cell cycle regulator that targets numerous proteins for destruction in S phase and after DNA damage, including Cdt1, p21, and Set8. CRL4(Cdt2) substrates contain a "PIP degron," which consists of a canonical proliferating cell nuclear antigen (PCNA) interaction motif (PIP box) and an adjacent basic amino acid. Substrates use their PIP box to form a binary complex with PCNA on chromatin and the basic residue to recruit CRL4(Cdt2) for substrate ubiquitylation. Using Xenopus egg extracts, we identify an acidic residue in PCNA that is essential to support destruction of all CRL4(Cdt2) substrates. This PCNA residue, which adjoins the basic amino acid of the bound PIP degron, is dispensable for substrate binding to PCNA but essential for CRL4(Cdt2) recruitment to chromatin. Our data show that the interaction of CRL4(Cdt2) with substrates requires molecular determinants not only in the substrate degron but also on PCNA. The results illustrate a potentially general mechanism by which E3 ligases can couple ubiquitylation to the formation of protein-protein interactions.


Asunto(s)
Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Xenopus/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Schizosaccharomyces/metabolismo , Especificidad por Sustrato , Complejos de Ubiquitina-Proteína Ligasa , Ubiquitina-Proteína Ligasas/química , Proteínas de Xenopus/química , Xenopus laevis/metabolismo
19.
Nucleic Acids Res ; 39(14): 5978-90, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21493688

RESUMEN

Cdt1 plays a critical role in DNA replication regulation by controlling licensing. In Metazoa, Cdt1 is regulated by CRL4(Cdt2)-mediated ubiquitylation, which is triggered by DNA binding of proliferating cell nuclear antigen (PCNA). We show here that fission yeast Cdt1 interacts with PCNA in vivo and that DNA loading of PCNA is needed for Cdt1 proteolysis after DNA damage and in S phase. Activation of this pathway by ultraviolet (UV)-induced DNA damage requires upstream involvement of nucleotide excision repair or UVDE repair enzymes. Unexpectedly, two non-canonical PCNA-interacting peptide (PIP) motifs, which both have basic residues downstream, function redundantly in Cdt1 proteolysis. Finally, we show that poly-ubiquitylation of PCNA, which occurs after DNA damage, reduces Cdt1 proteolysis. This provides a mechanism for fine-tuning the activity of the CRL4(Cdt2) pathway towards Cdt1, allowing Cdt1 proteolysis to be more efficient in S phase than after DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitinación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Cromatina/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Datos de Secuencia Molecular , Fase S/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/efectos de la radiación , Proteínas de Schizosaccharomyces pombe/química , Rayos Ultravioleta
20.
Nucleic Acids Res ; 39(9): e60, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21310713

RESUMEN

We report procedures to allow incorporation and detection of 5-ethynyl-2'-deoxyuridine (EdU) in fission yeast, a thymidine analogue which has some technical advantages over use of bromodeoxyuridine. Low concentrations of EdU (1 µM) are sufficient to allow detection of incorporation in cells expressing thymidine kinase and human equilibrative nucleoside transporter 1 (hENT1). However EdU is toxic and activates the rad3-dependent checkpoint, resulting in cell cycle arrest, potentially limiting its applications for procedures which require labelling over more than one cell cycle. Limited DNA synthesis, when elongation is largely blocked by hydroxyurea, can be readily detected by EdU incorporation using fluorescence microscopy. Thus EdU should be useful for detecting early stages of S phase, or DNA synthesis associated with DNA repair and recombination.


Asunto(s)
Replicación del ADN , Desoxiuridina/análogos & derivados , ADN de Hongos/biosíntesis , Desoxiuridina/análisis , Citometría de Flujo , Viabilidad Microbiana , Microscopía Fluorescente , Schizosaccharomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA