Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biol Trace Elem Res ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656681

RESUMEN

Silicon (Si) may be a mineral beneficial for bone health. Pregnancy and lactation have major impacts on maternal bone metabolism as bone minerals, including calcium (Ca), are required for growth of the foetus and for milk production. Like urinary Ca excretion, Si excretion has been reported to be high in pregnant women, but there are no data post-partum and during lactation. The aim of the present study was to investigate the urinary excretion of Si (U-Si), from the third trimester of pregnancy until 18 months post-partum, and in relation to the length of lactation, to determine if changes in U-Si are associated with changes in areal bone mineral density (aBMD). This longitudinal study included 81 pregnant women, of whom 56 completed the study. Spot urine samples were collected at the third trimester and at 0.5, 4, 12, and 18 months post-partum and were analysed for Si and Ca by ICP-OES. The aBMD was measured post-partum at lumbar spine and femoral neck by dual-energy x-ray absorptiometry. Women lactating for 4-8.9 and ≥ 9 months had significantly higher U-Si at 4 months post-partum, compared with the third trimester. No significant longitudinal differences in U-Si were found after correcting for creatinine. Changes in U-Si and in aBMD were not correlated, except at the lumbar spine from 0.5 to 12 months post-partum in the women lactating for 4-8.9 months. Taken together, our results suggest that there is a possibility that U-Si increases post-partum in women lactating for 4 months or longer, although it is not related to changes in aBMD.

2.
R Soc Open Sci ; 10(3): 221237, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36998770

RESUMEN

Heavy metals, including mercury (Hg) and cadmium (Cd), occur naturally or anthropogenically and are considered toxic to the environment and human health. However, studies on heavy metal contamination focus on locations close to industrialized settlements, while isolated environments with little human activity are often ignored due to perceived low risk. This study reports heavy metal exposure in Juan Fernandez fur seals (JFFS), a marine mammal endemic to an isolated and relatively pristine archipelago off the coast of Chile. We found exceptionally high concentrations of Cd and Hg in JFFS faeces. Indeed, they are among the highest reported for any mammalian species. Following analysis of their prey, we concluded that diet is the most likely source of Cd contamination in JFFS. Furthermore, Cd appears to be absorbed and incorporated into JFFS bones. However, it was not associated with mineral changes observed in other species, suggesting Cd tolerance/adaptations in JFFS bones. The high levels of silicon found in JFFS bones may counteract the effects of Cd. These findings are relevant to biomedical research, food security and the treatment of heavy metal contamination. It also contributes to understanding the ecological role of JFFS and highlights the need for surveillance of apparently pristine environments.

3.
Crit Rev Food Sci Nutr ; 62(4): 1003-1034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33086895

RESUMEN

Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.


Asunto(s)
Desnutrición , Solanum lycopersicum , Antioxidantes , Carotenoides , Edición Génica , Humanos , Solanum lycopersicum/genética
4.
J Am Chem Soc ; 143(34): 13557-13572, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34357768

RESUMEN

Metal-organic framework nanoparticles (nanoMOFs) have been widely studied in biomedical applications. Although substantial efforts have been devoted to the development of biocompatible approaches, the requirement of tedious synthetic steps, toxic reagents, and limitations on the shelf life of nanoparticles in solution are still significant barriers to their translation to clinical use. In this work, we propose a new postsynthetic modification of nanoMOFs with phosphate-functionalized methoxy polyethylene glycol (mPEG-PO3) groups which, when combined with lyophilization, leads to the formation of redispersible solid materials. This approach can serve as a facile and general formulation method for the storage of bare or drug-loaded nanoMOFs. The obtained PEGylated nanoMOFs show stable hydrodynamic diameters, improved colloidal stability, and delayed drug-release kinetics compared to their parent nanoMOFs. Ex situ characterization and computational studies reveal that PEGylation of PCN-222 proceeds in a two-step fashion. Most importantly, the lyophilized, PEGylated nanoMOFs can be completely redispersed in water, avoiding common aggregation issues that have limited the use of MOFs in the biomedical field to the wet form-a critical limitation for their translation to clinical use as these materials can now be stored as dried samples. The in vitro performance of the addition of mPEG-PO3 was confirmed by the improved intracellular stability and delayed drug-release capability, including lower cytotoxicity compared with that of the bare nanoMOFs. Furthermore, z-stack confocal microscopy images reveal the colocalization of bare and PEGylated nanoMOFs. This research highlights a facile PEGylation method with mPEG-PO3, providing new insights into the design of promising nanocarriers for drug delivery.


Asunto(s)
Portadores de Fármacos/química , Estructuras Metalorgánicas/química , Polietilenglicoles/química , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Portadores de Fármacos/síntesis química , Liberación de Fármacos , Células HeLa , Humanos , Simulación de Dinámica Molecular , Nanopartículas/química , Fosfatos/química
5.
J Biomed Mater Res A ; 109(10): 1967-1978, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33817967

RESUMEN

Numerous studies have reported on the positive effects of silicon (Si) on bone metabolism, particularly on the stimulatory effects of Si on osteoblast cells and on bone formation. Inhibitory effects of Si on osteoclast formation and bone resorption have also been demonstrated in vitro and are suggested to be mediated indirectly via stromal and osteoblast cells. Direct effects of Si on osteoclasts have been less studied and mostly using soluble Si, but no characterisation of the Si treatment solutions are provided. The aims of the present study were to (a) further investigate the direct inhibitory effects of Si on osteoclastogenesis in RANKL-stimulated RAW264.7 cells, (b) determine at what stage during osteoclastogenesis Si acts upon, and (c) determine if these effects can be attributed to the biologically relevant soluble orthosilicic acid specie. Our results demonstrate that silicon, at 50 µg/ml (or 1.8 mM), does not affect cell viability but directly inhibits the formation of TRAP+ multinucleated cells and the expression of osteoclast phenotypic genes in RAW264.7 cells. The inhibitory effect of Si was clearly associated with the early stages (first 24 hr) of osteoclastogenesis. Moreover, these effects can be attributed to the soluble orthosilicic acid specie.


Asunto(s)
Osteogénesis , Ligando RANK/farmacología , Ácido Silícico/farmacología , Animales , Medios de Cultivo , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Rojo Neutro/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Células RAW 264.7 , Silicio/análisis , Solubilidad
6.
Curr Opin Toxicol ; 19: 112-120, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32566805

RESUMEN

Daily oral exposure to vast numbers (>1013/adult/day) of micron or nano-sized persistent particles has become the norm for many populations. Significant airborne particle exposure is deleterious, so what about ingestion? Titanium dioxide in food grade form (fgTiO2) , which is an additive to some foods, capsules, tablets and toothpaste, may provide clues. Certainly, exposed human populations accumulate these particles in specialised intestinal cells at the base of large lymphoid follicles (Peyer's patches) and it's likely that a degree of absorption goes beyond this- i.e. lymphatics to blood circulation to tissues. We critically review the evidence and pathways. Regarding potential adverse effects, our primary message, for today's state-of-art, is that in vivo models have not been good enough and at times woeful. We provide a 'caveats list' to improve approaches and experimentation and illustrate why studies on biomarkers of particle uptake, and lower gut/mesenteric lymph nodes as targets, should be prioritized.

7.
J R Soc Interface ; 17(167): 20200145, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32486955

RESUMEN

Under physiological conditions, the predominant form of bioavailable silicon (Si) is orthosilicic acid (OSA). In this study, given Si's recognized positive effect on bone growth and integrity, we examined the chemical form and position of this natural Si source in the inorganic bone mineral hydroxyapatite (HA). X-ray diffraction (XRD) of rat tibia bone mineral showed that the mineral phase was similar to that of phase-pure HA. However, theoretical XRD patterns revealed that at the levels found in bone, the 'Si effect' would be virtually undetectable. Thus we used first principles density functional theory calculations to explore the energetic and geometric consequences of substituting OSA into a large HA model. Formation energy analysis revealed that OSA is not favourable as a neutral interstitial substitution but can be incorporated as a silicate ion substituting for a phosphate ion, suggesting that incorporation will only occur under specific conditions at the bone-remodelling interface and that dietary forms of Si will be metabolized to simpler chemical forms, specifically [Formula: see text]. Furthermore, we show that this substitution, at the low silicate concentrations found in the biological environment, is likely to be a driver of calcium phosphate crystallization from an amorphous to a fully mineralized state.


Asunto(s)
Huesos , Silicio , Animales , Durapatita , Ratas , Silicatos , Difracción de Rayos X
8.
Sci Rep ; 10(1): 9923, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555274

RESUMEN

Several studies have indicated that dietary silicon (Si) is beneficial for bone homeostasis and skeletal health. Furthermore, Si-containing bioactive glass biomaterials have positive effects on bone regeneration when used for repair of bone defects. Si has been demonstrated to stimulate osteoblast differentiation and bone mineralisation in vitro. However, the mechanisms underlying these effects of Si are not well understood. The aim of the present study was to investigate the effects of soluble Si on osteogenic differentiation and connexin 43 (CX43) gap junction communication in cultured pluripotent cells from human dental follicles (hDFC). Neutral Red uptake assay demonstrated that 25 µg/ml of Si significantly stimulated hDFC cell proliferation. Dosages of Si above 100 µg/ml decreased cell proliferation. Alizarin Red staining showed that osteogenic induction medium (OIM) by itself and in combination with Si (25 µg/ml) significantly increased mineralisation in hDFC cultures, although Si alone had no such effect. The expression of osteoblast-related markers in hDFC was analysed with RT-qPCR. OSX, RUNX2, BMP2, ALP, OCN, BSP and CX43 genes were expressed in hDFC cultured for 1, 7, 14 and 21 days. Expression levels of BMP-2 and BSP were significantly upregulated by OIM and Si (25 µg/ml) and were also induced by Si alone. Notably, the expression levels of OCN and CX43 on Day 21 were significantly increased only in the Si group. Flow cytometric measurements revealed that Si (50 µg/ml) significantly increased CX43 protein expression and gap junction communication in hDFC. Next-generation sequencing (NGS) and bioinformatics processing were used for the identification of differentially regulated genes and pathways. The influence of OIM over the cell differentiation profile was more prominent than the influence of Si alone. However, Si in combination with OIM increased the magnitude of expression (up or down) of the differentially regulated genes. The gene for cartilage oligomeric matrix protein (COMP) was the most significantly upregulated. Genes for the regulator of G protein signalling 4 (RGS4), regulator of G protein signalling 2 (RGS2), and matrix metalloproteinases (MMPs) 1, 8, and 10 were also strongly upregulated. Our findings reveal that soluble Si stimulates Cx43 gap junction communication in hDFC and induces gene expression patterns associated with osteogenic differentiation. Taken together, the results support the conclusion that Si is beneficial for bone health.


Asunto(s)
Diferenciación Celular , Conexina 43/metabolismo , Saco Dental/citología , Uniones Comunicantes/fisiología , Osteoblastos/citología , Osteogénesis , Dióxido de Silicio/farmacología , Adolescente , Proliferación Celular , Células Cultivadas , Niño , Conexina 43/genética , Saco Dental/efectos de los fármacos , Saco Dental/metabolismo , Humanos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo
9.
Small ; 16(21): e2000486, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32363770

RESUMEN

Human exposure to persistent, nonbiological nanoparticles and microparticles via the oral route is continuous and large scale (1012 -1013 particles per day per adult in Europe). Whether this matters or not is unknown but confirmed health risks with airborne particle exposure warns against complacency. Murine models of oral exposure will help to identify risk but, to date, lack validation or relevance to humans. This work addresses that gap. It reports i) on a murine diet, modified with differing concentrations of the common dietary particle, food grade titanium dioxide (fgTiO2 ), an additive of polydisperse form that contains micro- and nano-particles, ii) that these diets deliver particles to basal cells of intestinal lymphoid follicles, exactly as is reported as a "normal occurrence" in humans, iii) that confocal reflectance microscopy is the method of analytical choice to determine this, and iv) that food intake, weight gain, and Peyer's patch immune cell profiles, up to 18 weeks of feeding, do not differ between fgTiO2 -fed groups or controls. These findings afford a human-relevant and validated oral dosing protocol for fgTiO2 risk assessment as well as provide a generalized platform for application to oral exposure studies with nano- and micro-particles.


Asunto(s)
Exposición a Riesgos Ambientales , Nanopartículas del Metal , Medición de Riesgo , Titanio , Administración Oral , Animales , Ingestión de Alimentos/efectos de los fármacos , Humanos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/toxicidad , Ratones , Modelos Animales , Ganglios Linfáticos Agregados/efectos de los fármacos , Medición de Riesgo/métodos , Titanio/toxicidad , Aumento de Peso/efectos de los fármacos
10.
Immunity ; 52(5): 782-793.e5, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32272082

RESUMEN

Splenic red pulp macrophages (RPMs) contribute to erythrocyte homeostasis and are required for iron recycling. Heme induces the expression of SPIC transcription factor in monocyte-derived macrophages and promotes their differentiation into RPM precursors, pre-RPMs. However, the requirements for differentiation into mature RPMs remain unknown. Here, we have demonstrated that interleukin (IL)-33 associated with erythrocytes and co-cooperated with heme to promote the generation of mature RPMs through activation of the MyD88 adaptor protein and ERK1/2 kinases downstream of the IL-33 receptor, IL1RL1. IL-33- and IL1RL1-deficient mice showed defective iron recycling and increased splenic iron deposition. Gene expression and chromatin accessibility studies revealed a role for GATA transcription factors downstream of IL-33 signaling during the development of pre-RPMs that retained full potential to differentiate into RPMs. Thus, IL-33 instructs the development of RPMs as a response to physiological erythrocyte damage with important implications to iron recycling and iron homeostasis.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Interleucina-33/inmunología , Hierro/metabolismo , Macrófagos/inmunología , Transducción de Señal/inmunología , Bazo/metabolismo , Animales , Eritrocitos/inmunología , Eritrocitos/metabolismo , Hemo/inmunología , Hemo/metabolismo , Homeostasis/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Macrófagos/metabolismo , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor 88 de Diferenciación Mieloide/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Bazo/citología
11.
Biol Trace Elem Res ; 194(2): 321-327, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31254248

RESUMEN

Silicon is a trace element found mainly in plant-based food and proposed to be beneficial for bone health. Urinary excretion of Si has been shown to be a surrogate measure of its uptake in the gastrointestinal tract. The objective of this study was to describe and compare the levels of urinary Si excretion, and consequently Si uptake, in Swedish men, non-pregnant women, and pregnant women. No formal assessment of dietary Si intake was carried out in this study. This cross-sectional study included 89 men, 42 non-pregnant women, and 60 pregnant women. The subjects collected urine over a 24-h period and the samples were assayed for total Si using inductively coupled plasma optical emission spectrometry. The excretion levels of creatinine were used to validate the completeness of the urine sample collections. The mean 24-h urinary excretions of Si were 7.8 mg for the cohort of young men, 7.6 mg for the cohort of non-pregnant women, and 12.4 mg for the cohort of pregnant women. Creatinine excretion was similar between pregnant and non-pregnant women (10.4 vs. 10.8 mmol/day) and significantly higher in men (15.4 mmol/day). The pregnant women excreted significantly higher levels of Si than the young men and non-pregnant women, respectively (p < 0.05). The higher urinary excretion of Si by pregnant women compared with men and non-pregnant women is a novel finding possibly caused by temporary physiological changes during pregnancy such as increased gastrointestinal uptake of Si, altered bone metabolism, and increased renal excretion of Si.


Asunto(s)
Silicio , Oligoelementos , Estudios de Cohortes , Creatinina , Estudios Transversales , Femenino , Humanos , Masculino , Embarazo , Mujeres Embarazadas
12.
Environ Res ; 176: 108539, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31247431

RESUMEN

Exposure to cadmium (Cd) is recognised as one of the risk factors for osteoporosis, although critical exposure levels and exact mechanisms are still unknown. Here, we first confirmed that in male Wistar rats challenged orally with 6 different levels of Cd (0.3-10 mg/kg b.w.), over 28 days, there was a direct dose relationship to bone Cd concentration. Moreover, bone mineral content was significantly diminished by ∼15% (p < 0.0001) plateauing already at the lowest exposure level. For the other essential bone elements zinc (Zn) loss was most marked. Having established the sensitive metrics (measures of Cd exposure), we then applied them to 20 randomly selected human femoral head bone samples from 16 independent subjects. Bone Cd concentration was inversely proportional to trabecular bone mineral density and mineral (calcium) content and Zn content of bone, but not the donor's age. Our findings, through direct bone analyses, support the emerging epidemiological view that bone health, adjudged by mineral density, is extremely sensitive to even background levels of environmental Cd. Importantly, however, our data also suggest that Cd may play an even greater role in compromised bone health than prior indirect estimates of exposure could reveal. Environmental Cd may be a substantially determining factor in osteoporosis and large cohort studies with direct bone analyses are now merited.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Cadmio/toxicidad , Exposición a Riesgos Ambientales , Animales , Huesos , Humanos , Masculino , Minerales , Ratas , Ratas Wistar
13.
ACS Nano ; 12(11): 10843-10854, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30346692

RESUMEN

Sub-micron-sized silica nanoparticles, even as small as 10-20 nm in diameter, are well-known for their activation of mononuclear phagocytes. In contrast, the cellular impact of those <10 nm [ i.e., ultrasmall silica nanoparticles (USSN)] is not well-established for any cell type despite anticipated human exposure. Here, we synthesized discrete populations of USSN with volume median diameters between 1.8 to 16 nm and investigated their impact on the mixed cell population of human primary peripheral mononuclear cells. USSN 1.8-7.6 nm in diameter, optimally 3.6-5.1 nm in diameter, induced dose-dependent CD4 and CD8 T-cell activation in terms of cell surface CD25 and CD69 up-regulation at concentrations above 150 µM Sitotal (∼500 nM particles). Induced activation with only ∼2.4 µM particles was (a) equivalent to that observed with typical positive control levels of Staphylococcal enterotoxin B (SEB) and (b) evident in antigen presenting cell-deplete cultures as well as in a pure T-cell line (Jurkat) culture. In the primary mixed-cell population, USSN induced IFN-γ secretion but failed to induce T-cell proliferation or the secretion of IL-2, IL-10, or IL-4. Collectively, these data indicate that USSN initiate activation, with Th1 polarization, of T cells via direct particle-cell interaction. Finally, similarly sized iron hydroxide particles did not induce the expression of T-cell activation markers, indicating some selectivity of the ultrasmall particle type. Given that humans may be exposed to ultrasmall particles and that these materials have emerging bioclinical applications, their off-target immunomodulatory effects via direct T-cell activation should be carefully considered.


Asunto(s)
Nanopartículas/química , Dióxido de Silicio/farmacología , Linfocitos T/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Células Jurkat , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie , Linfocitos T/metabolismo
14.
Colloids Surf B Biointerfaces ; 155: 530-537, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28494431

RESUMEN

There is good evidence that certain silicon-containing materials promote would healing and their common feature is the delivery of orthosilicic acid (Si(OH)4) either directly or following metabolism. In this respect, amorphous silica nanoparticles (NP), which dissolve in aqueous environments releasing up to 2mM orthosilicic acid, may be appropriate 'slow release' vehicles for bioactive silicon. Here we studied the impact of silica NP suspensions (primary particles∼10nm) in undersaturated conditions (below 2mM Si) with differing degrees of surface charge and dissolution rate on human dermal fibroblasts (CCD-25SK cells) viability, proliferation and migration in a cellular wound model. Silica was shown to be non-toxic for all forms and concentrations tested and whilst the anticipated stimulatory effect of orthosilicic acid was observed, the silica NPs also stimulated fibroblast proliferation and migration. In particular, the amine-functionalized particles promoted wound closure more rapidly than soluble orthosilicic acid alone. We suggest that this effect is related to easy cellular internalization of these particles followed by their intracellular dissolution releasing silicic acid at a faster rate than its direct uptake from the medium. Our findings indicate that amorphous silica-based NPs may favour the delivery and release of bioactive silicic acid to cells, promoting wound healing.


Asunto(s)
Nanopartículas/química , Ácido Silícico/farmacología , Dióxido de Silicio/química , Cicatrización de Heridas/efectos de los fármacos , Aminas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Fibroblastos/efectos de los fármacos , Humanos , Ácido Silícico/química , Dióxido de Silicio/farmacología
15.
Am J Physiol Cell Physiol ; 312(5): C550-C561, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179233

RESUMEN

Silicon (Si) has long been known to play a major physiological and structural role in certain organisms, including diatoms, sponges, and many higher plants, leading to the recent identification of multiple proteins responsible for Si transport in a range of algal and plant species. In mammals, despite several convincing studies suggesting that silicon is an important factor in bone development and connective tissue health, there is a critical lack of understanding about the biochemical pathways that enable Si homeostasis. Here we report the identification of a mammalian efflux Si transporter, namely Slc34a2 (also termed NaPiIIb), a known sodium-phosphate cotransporter, which was upregulated in rat kidney following chronic dietary Si deprivation. Normal rat renal epithelium demonstrated punctate expression of Slc34a2, and when the protein was heterologously expressed in Xenopus laevis oocytes, Si efflux activity (i.e., movement of Si out of cells) was induced and was quantitatively similar to that induced by the known plant Si transporter OsLsi2 in the same expression system. Interestingly, Si efflux appeared saturable over time, but it did not vary as a function of extracellular [Formula: see text] or Na+ concentration, suggesting that Slc34a2 harbors a functionally independent transport site for Si operating in the reverse direction to the site for phosphate. Indeed, in rats with dietary Si depletion-induced upregulation of transporter expression, there was increased urinary phosphate excretion. This is the first evidence of an active Si transport protein in mammals and points towards an important role for Si in vertebrates and explains interactions between dietary phosphate and silicon.


Asunto(s)
Fosfatos/metabolismo , Silicio/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/química , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo , Sodio/metabolismo , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie
16.
PLoS One ; 11(2): e0144780, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26863624

RESUMEN

Silicon (Si) is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA) has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0-42 mM Si), at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP) of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface's water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and decreased hydrophobicity, respectively. AFM showed an increase in surface roughness of the 6 mM Si treated surface, which correlated well with an increase in number of vinculin plaques. These findings suggest that NSP of the right size (relative to charge) adsorb readily to the HA surface, changing the surface characteristics and, thus, improving osteoblast cell adhesion. This treatment provides a simple way to modify plasma-coated HA surfaces that may enable improved osseointegration of bone implants.


Asunto(s)
Durapatita/química , Durapatita/farmacología , Nanopartículas/química , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Dióxido de Silicio/química , Adsorción , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Humanos , Gases em Plasma/química , Propiedades de Superficie
17.
Bone Rep ; 1: 9-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26665155

RESUMEN

Silicon and boron share many similarities, both chemically and biochemically, including having similar effects on bone, although their mechanisms of action are not known. Here we compared the loading of silicon and boron into bone, their localization and how they are influenced by age (growth & development), to obtain further clues as to the biological effects of these elements and, especially, to see if they behave the same or not. Bone samples were obtained from two different studies where female Sprague Dawley rats had been maintained on a normal maintenance diet for up to 43 weeks. Total bone elemental levels were determined by ICP-OES following microwave assisted acid digestion. Silicon and boron levels in the decalcified bones (i.e. the collagen fraction) were also investigated. Silicon and boron showed marked differences in loading and in their localization in bone. Highest silicon and lowest boron concentrations were found in the under-mineralized bone of younger rats and lowest silicon and highest boron concentrations were found in the fully mineralized bone of the adult rat. Overall, however total bone silicon content increased with age, as did boron content, the latter mirroring the increase in calcium (mineral) content of bone. However, whereas silicon showed equal distribution in the collagen and mineral fractions of bone, boron was exclusively localized in the mineral fraction. These findings confirm the reported association between silicon and collagen, especially at the early stages of bone mineralization, and show that boron is associated with the bone mineral but not connective tissues. These data suggest that silicon and boron have different biological roles and that one is unlikely, therefore, to substitute for the other, or at least boron would not substitute for Si in the connective tissues. Finally, we noted that silicon levels in the mineral fraction varied greatly between the two studies, suggesting that one or more nutritional factor(s) may influence the loading of Si into the mineral fraction of bone. This and the nature of the interaction between Si and collagen deserve further attention.

18.
J Nutr ; 145(7): 1498-506, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25972522

RESUMEN

BACKGROUND: Dietary silicon has been positively linked with vascular health and protection against atherosclerotic plaque formation, but the mechanism of action is unclear. OBJECTIVES: We investigated the effect of dietary silicon on 1) serum and aorta silicon concentrations, 2) the development of aortic lesions and serum lipid concentrations, and 3) the structural and biomechanic properties of the aorta. METHODS: Two studies, of the same design, were conducted to address the above objectives. Female mice, lacking the apolipoprotein E (apoE) gene, and therefore susceptible to atherosclerosis, were separated into 3 groups of 10-15 mice, each exposed to a high-fat diet (21% wt milk fat and 1.5% wt cholesterol) but with differing concentrations of dietary silicon, namely: silicon-deprived (-Si; <3-µg silicon/g feed), silicon-replete in feed (+Si-feed; 100-µg silicon/g feed), and silicon-replete in drinking water (+Si-water; 115-µg silicon/mL) for 15-19 wk. Silicon supplementation was in the form of sodium metasilicate (feed) or monomethylsilanetriol (drinking water). RESULTS: The serum silicon concentration in the -Si group was significantly lower than in the +Si-feed (by up to 78%; P < 0.003) and the +Si-water (by up to 84%; P < 0.006) groups. The aorta silicon concentration was also lower in the -Si group than in the +Si-feed group (by 65%; P = 0.025), but not compared with the +Si-water group. There were no differences in serum and aorta silicon concentrations between the silicon-replete groups. Body weights, tissue wet weights at necropsy, and structural, biomechanic, and morphologic properties of the aorta were not affected by dietary silicon; nor were the development of fatty lesions and serum lipid concentrations. CONCLUSIONS: These findings suggest that dietary silicon has no effect on atherosclerosis development and vascular health in the apoE mouse model of diet-induced atherosclerosis, contrary to the reported findings in the cholesterol-fed rabbit model.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Dieta , Silicio/administración & dosificación , Silicio/deficiencia , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Apolipoproteínas E/genética , Aterosclerosis/sangre , Aterosclerosis/tratamiento farmacológico , Peso Corporal , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Suplementos Dietéticos , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/sangre , Placa Aterosclerótica/prevención & control , Silicio/sangre , Triglicéridos/sangre
19.
Bone ; 75: 40-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25687224

RESUMEN

Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague-Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n=8-10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 µg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2-6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague-Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially lower than previously estimated which could explain why absolute silicon deficiency is difficult to achieve but, when it is achieved in young growing animals, it results in stunted growth and abnormal development of bone and other connective tissues.


Asunto(s)
Envejecimiento/metabolismo , Tejido Conectivo/química , Silicio/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Sprague-Dawley , Silicio/análisis
20.
Nutr Metab (Lond) ; 11(1): 4, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24405738

RESUMEN

BACKGROUND: Accumulating evidence suggests a role for silicon in optimal connective tissue health. Further proof of its importance/essentiality may be provided by studies involving imposed depletion followed by 29Si challenge to estimate metabolic balance. Prior to conducting these expensive studies, we first established the variance of estimating normal Si excretion versus intake using a single oral dose of typical dietary Si, orthosilicic acid. METHODS: Healthy volunteers were recruited from Loei Rajabhat University, separated into two matched groups (three males and three females/group) and maintained on a standardized diet for the three study days. One group ingested 500 ml water containing orthosilicic acid (28.9 mg Si) and the other group received 500 ml water alone, all on a fasted stomach. Blood samples and total urine and faeces were collected over the 48 h post-dose period and 24 h before-hand (baseline) and analysed for silicon by inductively coupled plasma optical emission spectrometry. RESULTS: Serum Si analysis confirmed the ready absorption of silicon from the orthosilicic acid solution. Mean total urinary and faecal Si excretions over the 24 h post-dose period accounted for 57 ± 9.5% and 39 ± 9.4% of the ingested dose, respectively. Thus in total 96.3 ± 5.8% of the ingested dose was recovered in faecal plus urinary excretions over the 24 h post-dose period. CONCLUSIONS: We report that in healthy subjects (presumably in Si balance), the ingestion of a soluble dose of dietary Si results in the same quantity (within analytical error) being excreted within 24 h. It is currently not known if this all originated from the dose solution or if there was some exchange with the body Si pool but, given the low variance in these silicon balance data, isotopic studies are now merited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA