Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39205155

RESUMEN

Filoviruses, like the Marburg (MARV) and Ebola (EBOV) viruses, have caused outbreaks associated with significant hemorrhagic morbidity and high fatality rates. Vaccines offer one of the best countermeasures for fatal infection, but to date only the EBOV vaccine has received FDA licensure. Given the limited cross protection between the EBOV vaccine and Marburg hemorrhagic fever (MHF), we analyzed the protective efficacy of a similar vaccine, rVSV-MARV, in the lethal cynomolgus macaque model. NHPs vaccinated with a single dose (as little as 1.6 × 107 pfu) of rVSV-MARV seroconverted to MARV G-protein prior to challenge on day 42. Vaccinemia was measured in all vaccinated primates, self-resolved by day 14 post vaccination. Importantly, all vaccinated NHPs survived lethal MARV challenge, and showed no significant alterations in key markers of morbid disease, including clinical signs, and certain hematological and clinical chemistry parameters. Further, apart from one primate (from which tissues were not collected and no causal link was established), no pathology associated with Marburg disease was observed in vaccinated animals. Taken together, rVSV-MARV is a safe and efficacious vaccine against MHF in cynomolgus macaques.


Asunto(s)
Macaca fascicularis , Enfermedad del Virus de Marburg , Marburgvirus , Vesiculovirus , Vacunas Virales , Animales , Enfermedad del Virus de Marburg/prevención & control , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/virología , Marburgvirus/inmunología , Marburgvirus/genética , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Vesiculovirus/genética , Vesiculovirus/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Modelos Animales de Enfermedad , Vacunación , Masculino , Femenino , Eficacia de las Vacunas , Vectores Genéticos , Inmunogenicidad Vacunal
2.
Viruses ; 16(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39066263

RESUMEN

Favipiravir is a ribonucleoside analogue that has been explored as a therapeutic for the treatment of Ebola Virus Disease (EVD). Promising data from rodent models has informed nonhuman primate trials, as well as evaluation in patients during the 2013-2016 West African EVD outbreak of favipiravir treatment. However, mixed results from these studies hindered regulatory approval of favipiravir for the indication of EVD. This study examined the influence of route of administration, duration of treatment, and treatment schedule of favipiravir in immune competent mouse and guinea pig models using rodent-adapted Zaire ebolavirus (EBOV). A dose of 300 mg/kg/day of favipiravir with an 8-day treatment was found to be fully effective at preventing lethal EVD-like disease in BALB/c mice regardless of route of administration (oral, intraperitoneal, or subcutaneous) or whether it was provided as a once-daily dose or a twice-daily split dose. Preclinical data generated in guinea pigs demonstrates that an 8-day treatment of 300 mg/kg/day of favipiravir reduces mortality following EBOV challenge regardless of route of treatment or duration of treatments for 8, 11, or 15 days. This work supports the future translational development of favipiravir as an EVD therapeutic.


Asunto(s)
Amidas , Antivirales , Modelos Animales de Enfermedad , Ebolavirus , Fiebre Hemorrágica Ebola , Ratones Endogámicos BALB C , Pirazinas , Animales , Amidas/uso terapéutico , Amidas/administración & dosificación , Amidas/farmacología , Cobayas , Pirazinas/administración & dosificación , Pirazinas/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Ratones , Ebolavirus/efectos de los fármacos , Antivirales/administración & dosificación , Antivirales/uso terapéutico , Femenino , Vías de Administración de Medicamentos , Esquema de Medicación
3.
PLoS Biol ; 22(2): e3002544, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422166

RESUMEN

Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the cofactor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface, and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity. Treatment with the compounds reduced replication of infectious EBOV in cells and in vivo in a mouse model. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Proteínas de la Nucleocápside , Ubiquitina , Replicación Viral , Animales , Humanos , Ratones , Ebolavirus/genética , Ubiquitina/metabolismo , Proteínas Reguladoras y Accesorias Virales , Replicación Viral/genética
4.
Methods Mol Biol ; 2682: 149-157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37610580

RESUMEN

In vivo imaging system (IVIS) is a powerful tool for the study of infectious diseases, providing the ability to non-invasively follow viral infection in an individual animal over time. Recombinant henipaviruses expressing bioluminescent or fluorescent reporter proteins can be used both to monitor the spatial and temporal progression of Nipah virus (NiV) infection in vivo as well as in ex vivo tissues. Virally produced luciferases react with systemically administered substrate to produce bioluminescence that can then be detected via IVIS imaging, while fluorescent reporters inherently generate detectable fluorescence without a substrate. Here we describe protocols applying bioluminescent or fluorescent reporter expressing recombinant viruses to in vivo or ex vivo imaging of NiV infection.


Asunto(s)
Infecciones por Henipavirus , Orthopoxvirus , Animales , Diagnóstico por Imagen , Colorantes , Modelos Animales
5.
Methods Mol Biol ; 2682: 219-229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37610585

RESUMEN

Small rodent animal models that recapitulate the symptomology and pathology of the human disease caused by Nipah virus (NiV) are crucial not only to study virus-induced disease but also a critical component for the development of vaccine and therapeutic candidates. The Syrian golden hamster is the most commonly used small animal model for NiV and develops clinical symptoms and pathologies that closely resemble NiV disease in humans. In this chapter, we describe standard techniques used to infect hamsters and conduct evaluation of therapeutics and vaccine candidates.


Asunto(s)
Infecciones por Henipavirus , Animales , Cricetinae , Humanos , Mesocricetus , Modelos Animales
6.
Viruses ; 15(7)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37515275

RESUMEN

Ebola virus (EBOV) causes Ebola virus disease (EVD), which is characterized by hemorrhagic fever with high mortality rates in humans. EBOV sexual transmission has been a concern since the 2014-2016 outbreak in Africa, as persistent infection in the testis and transmission to women was demonstrated. The only study related to establishing an intravaginal small animal infection model was recently documented in IFNAR-/- mice using wild-type and mouse-adapted EBOV (maEBOV), and resulted in 80% mortality, supporting epidemiological data. However, this route of transmission is still poorly understood in women, and the resulting EVD from it is understudied. Here, we contribute to this field of research by providing data from immunocompetent BALB/c mice. We demonstrate that progesterone priming increased the likelihood of maEBOV vaginal infection and of exhibiting the symptoms of disease and seroconversion. However, our data suggest subclinical infection, regardless of the infective dose. We conclude that maEBOV can infect BALB/c mice through vaginal inoculation, but that this route of infection causes significantly less disease compared to intraperitoneal injection at a similar dose, which is consistent with previous studies using other peripheral routes of inoculation in that animal model. Our data are inconsistent with the disease severity described in female patients, therefore suggesting that BALB/c mice are unsuitable for modeling typical EVD following vaginal challenge with maEBOV. Further studies are required to determine the mechanisms by which EVD is attenuated in BALB/c mice, using maEBOV via the vaginal route, as in our experimental set-up.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Masculino , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Vagina , Modelos Animales
7.
Biomedicines ; 11(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37509430

RESUMEN

Recent studies have confirmed that lung microvascular endothelial injury plays a critical role in the pathophysiology of COVID-19. Our group and others have demonstrated the beneficial effects of H2S in several pathological processes and provided a rationale for considering the therapeutic implications of H2S in COVID-19 therapy. Here, we evaluated the effect of the slow-releasing H2S donor, GYY4137, on the barrier function of a lung endothelial cell monolayer in vitro, after challenging the cells with plasma samples from COVID-19 patients or inactivated SARS-CoV-2 virus. We also assessed how the cytokine/chemokine profile of patients' plasma, endothelial barrier permeability, and disease severity correlated with each other. Alterations in barrier permeability after treatments with patient plasma, inactivated virus, and GYY4137 were monitored and assessed by electrical impedance measurements in real time. We present evidence that GYY4137 treatment reduced endothelial barrier permeability after plasma challenge and completely reversed the endothelial barrier disruption caused by inactivated SARS-CoV-2 virus. We also showed that disease severity correlated with the cytokine/chemokine profile of the plasma but not with barrier permeability changes in our assay. Overall, these data demonstrate that treatment with H2S-releasing compounds has the potential to ameliorate SARS-CoV-2-associated lung endothelial barrier disruption.

8.
J Infect Dis ; 228(5): 604-614, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36869692

RESUMEN

The common marmoset (Callithrix jacchus) is increasingly recognized as an ideal nonhuman primate (NHP) at high biocontainment due to its smaller size and relative ease of handling. Here, we evaluated the susceptibility and pathogenesis of Nipah virus Bangladesh strain (NiVB) infection in marmosets at biosafety level 4. Infection via the intranasal and intratracheal route resulted in fatal disease in all 4 infected marmosets. Three developed pulmonary edema and hemorrhage as well as multifocal hemorrhagic lymphadenopathy, while 1 recapitulated neurologic clinical manifestations and cardiomyopathy on gross pathology. Organ-specific innate and inflammatory responses were characterized by RNA sequencing in 6 different tissues from infected and control marmosets. Notably, a unique transcriptome was revealed in the brainstem of the marmoset exhibiting neurological signs. Our results provide a more comprehensive understanding of NiV pathogenesis in an accessible and novel NHP model, closely reflecting clinical disease as observed in NiV patients.


Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Edema Pulmonar , Animales , Callithrix , Bangladesh
9.
Viruses ; 15(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36851495

RESUMEN

The genetic diversities of mammalian tick-borne flaviviruses are poorly understood. We used next-generation sequencing (NGS) to deep sequence different viruses and strains belonging to this group of flaviviruses, including Central European tick-borne encephalitis virus (TBEV-Eur), Far Eastern TBEV (TBEV-FE), Langat (LGTV), Powassan (POWV), Deer Tick (DTV), Kyasanur Forest Disease (KFDV), Alkhurma hemorrhagic fever (AHFV), and Omsk hemorrhagic fever (OHFV) viruses. DTV, AHFV, and KFDV had the lowest genetic diversity, while POWV strains LEIV-5530 and LB, OHFV, TBEV-Eur, and TBEV-FE had higher genetic diversities. These findings are compatible with the phylogenetic relationships between the viruses. For DTV and POWV, the amount of genetic diversity could be explained by the number of tick vector species and amplification hosts each virus can occupy, with low diversity DTV having a more limited vector and host pool, while POWV with higher genetic diversities has been isolated from different tick species and mammals. It is speculated that high genetic diversity may contribute to the survival of the virus as it encounters these different environments.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Animales , Filogenia , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Mamíferos , Variación Genética
10.
NPJ Vaccines ; 7(1): 109, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131104

RESUMEN

Rift Valley fever (RVF) is a mosquito-borne zoonosis endemic to Africa and the Arabian Peninsula, which causes large outbreaks among humans and ruminants. Single dose vaccinations using live-attenuated RVF virus (RVFV) support effective prevention of viral spread in endemic countries. Due to the segmented nature of RVFV genomic RNA, segments of vaccine strain-derived genomic RNA could be incorporated into wild-type RVFV within co-infected mosquitoes or animals. Rationally designed vaccine candidate RVax-1 displays protective epitopes fully identical to the previously characterized MP-12 vaccine. Additionally, all genome segments of RVax-1 contribute to the attenuation phenotype, which prevents the formation of pathogenic reassortant strains. This study demonstrated that RVax-1 cannot replicate efficiently in orally fed Aedes aegypti mosquitoes, while retaining strong immunogenicity and protective efficacy in an inbred mouse model, which were indistinguishable from the MP-12 vaccine. These findings support further development of RVax-1 as the next generation MP-12-based vaccine for prevention of Rift Valley fever in humans and animals.

11.
PLoS Negl Trop Dis ; 15(9): e0009785, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34516560

RESUMEN

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus with a wide host range including ruminants and humans. RVFV outbreaks have had devastating effects on public health and the livestock industry in African countries. However, there is no approved RVFV vaccine for human use in non-endemic countries and no FDA-approved antiviral drug for RVFV treatment. The RVFV 78kDa protein (P78), which is a membrane glycoprotein, plays a role in virus dissemination in the mosquito host, but its biological role in mammalian hosts remains unknown. We generated an attenuated RVFV MP-12 strain-derived P78-High virus and a virulent ZH501 strain-derived ZH501-P78-High virus, both of which expressed a higher level of P78 and carried higher levels of P78 in the virion compared to their parental viruses. We also generated another MP-12-derived mutant virus (P78-KO virus) that does not express P78. MP-12 and P78-KO virus replicated to similar levels in fibroblast cell lines and Huh7 cells, while P78-High virus replicated better than MP-12 in Vero E6 cells, fibroblast cell lines, and Huh7 cells. Notably, P78-High virus and P78-KO virus replicated less efficiently and more efficiently, respectively, than MP-12 in macrophage cell lines. ZH501-P78-High virus also replicated poorly in macrophage cell lines. Our data further suggest that inefficient binding of P78-High virus to the cells led to inefficient virus internalization, low virus infectivity and reduced virus replication in a macrophage cell line. P78-High virus and P78-KO virus showed lower and higher virulence than MP-12, respectively, in young mice. ZH501-P78-High virus also exhibited lower virulence than ZH501 in mice. These data suggest that high levels of P78 expression attenuate RVFV virulence by preventing efficient virus replication in macrophages. Genetic alteration leading to increased P78 expression may serve as a novel strategy for the attenuation of RVFV virulence and generation of safe RVFV vaccines.


Asunto(s)
Macrófagos/virología , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/fisiología , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral/fisiología , Animales , Ratones , Virus de la Fiebre del Valle del Rift/patogenicidad , Proteínas del Envoltorio Viral/genética , Virulencia
12.
Viruses ; 13(7)2021 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-34372594

RESUMEN

Currently there is no FDA-licensed vaccine or therapeutic against Sudan ebolavirus (SUDV) infections. The largest ever reported 2014-2016 West Africa outbreak, as well as the 2021 outbreak in the Democratic Republic of Congo, highlight the critical need for countermeasures against filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would greatly add to the screening of antivirals and vaccines. Here, we infected signal transducer and activator of transcription-1 knock out (STAT-1 KO) mice with five different wildtype filoviruses to determine susceptibility. SUDV and Marburg virus (MARV) were the most virulent, and caused 100% or 80% lethality, respectively. Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Taï Forest ebolavirus (TAFV) caused 40%, 20%, and no mortality, respectively. Further characterization of SUDV in STAT-1 KO mice demonstrated lethality down to 3.1 × 101 pfu. Viral genomic material was detectable in serum as early as 1 to 2 days post-challenge. The onset of viremia was closely followed by significant changes in total white blood cells and proportion of neutrophils and lymphocytes, as well as by an influx of neutrophils in the liver and spleen. Concomitant significant fluctuations in blood glucose, albumin, globulin, and alanine aminotransferase were also noted, altogether consistent with other models of filovirus infection. Finally, favipiravir treatment fully protected STAT-1 KO mice from lethal SUDV challenge, suggesting that this may be an appropriate small animal model to screen anti-SUDV countermeasures.


Asunto(s)
Modelos Animales de Enfermedad , Ebolavirus/genética , Ratones Noqueados , Factor de Transcripción STAT1/genética , Amidas/uso terapéutico , Animales , Anticuerpos Antivirales/sangre , Antivirales/uso terapéutico , Ebolavirus/clasificación , Ebolavirus/efectos de los fármacos , Ebolavirus/patogenicidad , Femenino , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Masculino , Ratones , Pirazinas/uso terapéutico , Proteínas Virales/genética
13.
Nature ; 591(7849): 293-299, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33494095

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-a new coronavirus that has led to a worldwide pandemic1-has a furin cleavage site (PRRAR) in its spike protein that is absent in other group-2B coronaviruses2. To explore whether the furin cleavage site contributes to infection and pathogenesis in this virus, we generated a mutant SARS-CoV-2 that lacks the furin cleavage site (ΔPRRA). Here we report that replicates of ΔPRRA SARS-CoV-2 had faster kinetics, improved fitness in Vero E6 cells and reduced spike protein processing, as compared to parental SARS-CoV-2. However, the ΔPRRA mutant had reduced replication in a human respiratory cell line and was attenuated in both hamster and K18-hACE2 transgenic mouse models of SARS-CoV-2 pathogenesis. Despite reduced disease, the ΔPRRA mutant conferred protection against rechallenge with the parental SARS-CoV-2. Importantly, the neutralization values of sera from patients with coronavirus disease 2019 (COVID-19) and monoclonal antibodies against the receptor-binding domain of SARS-CoV-2 were lower against the ΔPRRA mutant than against parental SARS-CoV-2, probably owing to an increased ratio of particles to plaque-forming units in infections with the former. Together, our results demonstrate a critical role for the furin cleavage site in infection with SARS-CoV-2 and highlight the importance of this site for evaluating the neutralization activities of antibodies.


Asunto(s)
COVID-19/virología , Furina/metabolismo , Mutación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/patología , COVID-19/fisiopatología , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Humanos , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/fisiopatología , Enfermedades Pulmonares/virología , Masculino , Ratones , Ratones Transgénicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteolisis , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Replicación Viral/genética
14.
Microorganisms ; 10(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35056541

RESUMEN

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East that can affect humans and ruminant livestock. Currently, there are no approved vaccines or therapeutics for the treatment of severe RVF disease in humans. Tilorone-dihydrochloride (Tilorone) is a broad-spectrum antiviral candidate that has previously shown efficacy against a wide range of DNA and RNA viruses, and which is clinically utilized for the treatment of respiratory infections in Russia and other Eastern European countries. Here, we evaluated the antiviral activity of Tilorone against Rift Valley fever virus (RVFV). In vitro, Tilorone inhibited both vaccine (MP-12) and virulent (ZH501) strains of RVFV at low micromolar concentrations. In the mouse model, treatment with Tilorone significantly improved survival outcomes in BALB/c mice challenged with a lethal dose of RVFV ZH501. Treatment with 30 mg/kg/day resulted in 80% survival when administered immediately after infection. In post-exposure prophylaxis, Tilorone resulted in 30% survival at one day after infection when administered at 45 mg/kg/day. These findings demonstrate that Tilorone has potent antiviral efficacy against RVFV infection in vitro and in vivo and supports further development of Tilorone as a potential antiviral therapeutic for treatment of RVFV infection.

15.
bioRxiv ; 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32869021

RESUMEN

SARS-CoV-2 has resulted in a global pandemic and shutdown economies around the world. Sequence analysis indicates that the novel coronavirus (CoV) has an insertion of a furin cleavage site (PRRAR) in its spike protein. Absent in other group 2B CoVs, the insertion may be a key factor in the replication and virulence of SARS-CoV-2. To explore this question, we generated a SARS-CoV-2 mutant lacking the furin cleavage site (ΔPRRA) in the spike protein. This mutant virus replicated with faster kinetics and improved fitness in Vero E6 cells. The mutant virus also had reduced spike protein processing as compared to wild-type SARS-CoV-2. In contrast, the ΔPRRA had reduced replication in Calu3 cells, a human respiratory cell line, and had attenuated disease in a hamster pathogenesis model. Despite the reduced disease, the ΔPRRA mutant offered robust protection from SARS-CoV-2 rechallenge. Importantly, plaque reduction neutralization tests (PRNT 50 ) with COVID-19 patient sera and monoclonal antibodies against the receptor-binding domain found a shift, with the mutant virus resulting in consistently reduced PRNT 50 titers. Together, these results demonstrate a critical role for the furin cleavage site insertion in SARS-CoV-2 replication and pathogenesis. In addition, these findings illustrate the importance of this insertion in evaluating neutralization and other downstream SARS-CoV-2 assays. IMPORTANCE: As COVID-19 has impacted the world, understanding how SARS-CoV-2 replicates and causes virulence offers potential pathways to disrupt its disease. By removing the furin cleavage site, we demonstrate the importance of this insertion to SARS-CoV-2 replication and pathogenesis. In addition, the findings with Vero cells indicate the likelihood of cell culture adaptations in virus stocks that can influence reagent generation and interpretation of a wide range of data including neutralization and drug efficacy. Overall, our work highlights the importance of this key motif in SARS-CoV-2 infection and pathogenesis. ARTICLE SUMMARY: A deletion of the furin cleavage site in SARS-CoV-2 amplifies replication in Vero cells, but attenuates replication in respiratory cells and pathogenesis in vivo. Loss of the furin site also reduces susceptibility to neutralization in vitro .

16.
Antiviral Res ; 170: 104567, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31351092

RESUMEN

Ebola virus disease (EVD) is caused by Ebola virus (EBOV) and characterized in humans by hemorrhagic fever with high fatality rates. Human-to-human EBOV transmission occurs by physical contact with infected body fluids, or indirectly by contaminated surfaces. Sexual transmission is a route of infection only recently documented despite isolating EBOV virus or genome in the semen since 1976. Data on dissemination of EBOV from survivors remain limited and EBOV pathogenesis in humans following sexual transmission is unknown. The in vitro antiviral efficacy of polyphenylene carboxymethylene (PPCM) against EBOV was investigated considering the limited countermeasures available to block infection through sexual intercourse. PPCM is a vaginal topical contraceptive microbicide shown to prevent sexual transmission of HIV, herpes virus, and bacterial infections in several different models. Here we demonstrate its antiviral activity against EBOV. No viral replication was detected in the presence of PPCM in cell culture, including vaginal epithelial (VK2/E6E7) cells. Specifically, PPCM reduced viral attachment to cells by interfering with EBOV glycoprotein, and possibly through binding the cell surface glycosaminoglycan heparan sulfate important in the infection process. EBOV-infected VK2/E6E7 cells were found to secrete type III interferon (IFN), suggesting activation of distinct PRRs or downstream signaling factors from those required for type I and II IFN. The addition of PPCM following cell infection prevented notably the increase of these inflammation markers. Therefore, PPCM could potentially be used as a topical microbicide to reduce transmission by EBOV-positive survivors during sexual intercourse.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Células Epiteliales/virología , Polímeros/farmacología , Acoplamiento Viral/efectos de los fármacos , Antivirales/química , Línea Celular Transformada , Anticonceptivos Femeninos/farmacología , Ebolavirus/genética , Células Epiteliales/efectos de los fármacos , Femenino , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/transmisión , Humanos , Polímeros/química , Enfermedades de Transmisión Sexual/prevención & control , Enfermedades de Transmisión Sexual/virología , Vagina/citología , Proteínas del Envoltorio Viral/genética
17.
Viruses ; 11(2)2019 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-30717492

RESUMEN

The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/ß and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo ebolavirus and Taï Forest ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10-1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 10² pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.


Asunto(s)
Amidas/uso terapéutico , Antivirales/uso terapéutico , Infecciones por Filoviridae/tratamiento farmacológico , Pirazinas/uso terapéutico , Receptores de Interferón/genética , Animales , Modelos Animales de Enfermedad , Ebolavirus , Femenino , Filoviridae , Técnicas de Inactivación de Genes , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Hígado/patología , Masculino , Enfermedad del Virus de Marburg/tratamiento farmacológico , Marburgvirus , Ratones , Ratones Noqueados , Prueba de Estudio Conceptual , ARN Viral/sangre , Receptores de Interferón/inmunología , Bazo/patología , Virulencia
18.
Sci Rep ; 8(1): 17097, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459418

RESUMEN

Rift Valley fever phlebovirus (RVFV) is a pathogen of Rift Valley fever, which is a mosquito-borne zoonotic disease for domestic livestock and humans in African countries. Currently, no approved vaccine is available for use in non-endemic areas. The MP-12 strain is so far the best live attenuated RVFV vaccine candidate because of its good protective efficacy in animal models. However, there are safety concerns for use of MP-12 in humans. We previously developed a single-cycle replicable MP-12 (scMP-12) which lacks NSs gene and undergoes only a single round of viral replication because of its impaired ability to induce membrane-membrane fusion. In the present study, we generated an scMP-12 mutant (scMP-12-mutNSs) carrying a mutant NSs, which degrades double-stranded RNA-dependent protein kinase R but does not inhibit host transcription. Immunization of mice with a single dose (105 PFU) of scMP-12-mutNSs elicited RVFV neutralizing antibodies and high titers of anti-N IgG production and fully protected the mice from lethal wild-type RVFV challenge. Immunogenicity and protective efficacy of scMP-12-mutNSs were better than scMP-12, demonstrating that scMP-12-mutNSs is a more efficacious vaccine candidate than scMP-12. Furthermore, our data suggested that RVFV vaccine efficacy can be improved by using this specific NSs mutant.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Mutación , Fiebre del Valle del Rift/prevención & control , Virus de la Fiebre del Valle del Rift/patogenicidad , Vacunas Atenuadas/administración & dosificación , Proteínas no Estructurales Virales/genética , Vacunas Virales/administración & dosificación , África , Animales , Femenino , Ratones , Fiebre del Valle del Rift/inmunología , Fiebre del Valle del Rift/virología , Vacunación , Replicación Viral
19.
J Infect Dis ; 218(suppl_5): S438-S447, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30192975

RESUMEN

Marburg virus (MARV; family Filoviridae) causes sporadic outbreaks of Marburg hemorrhagic fever in sub-Saharan Africa with case fatality rates reaching 90%. Wild-type filoviruses, including MARV and the closely related Ebola virus, are unable to suppress the type I interferon response in rodents, and therefore require adaptation of the viruses to cause disease in immunocompetent animals. In the current study, we demonstrate that STAT2 knockout Syrian hamsters are susceptible to infection with different wild-type MARV variants. MARV Musoke causes a robust and systemic infection resulting in lethal disease. Histopathological findings share features similar to those observed in human patients and other animal models of filovirus infection. Reverse-transcription polymerase chain reaction analysis of host transcripts shows a dysregulation of the innate immune response. Our results demonstrate that the STAT2 knockout hamster represents a novel small animal model of severe MARV infection and disease without the requirement for virus adaptation.


Asunto(s)
Enfermedad del Virus de Marburg/etiología , Factor de Transcripción STAT2/fisiología , Animales , Cricetinae , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Masculino , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/patología
20.
J Infect Dis ; 218(10): 1602-1610, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-29912426

RESUMEN

Background: Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small-particle aerosol exposure is still limited. Methods: Infectivity, pathogenicity, and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-FlucNP). Results: Both viruses had an equivalent pathogenicity in hamsters, which developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. We showed that virus replication was predominantly initiated in the lower respiratory tract and, although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 postinfection. Conclusion: Hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.


Asunto(s)
Aerosoles/administración & dosificación , Infecciones por Henipavirus , Virus Nipah/patogenicidad , Administración por Inhalación , Animales , Cricetinae , Modelos Animales de Enfermedad , Infecciones por Henipavirus/diagnóstico por imagen , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/transmisión , Infecciones por Henipavirus/virología , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/virología , Mesocricetus , Imagen Óptica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA