Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 260(Pt 2): 129579, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266852

RESUMEN

High Energy Ball-Milling (HEBM) modifies starchs' granule morphology, physicochemical properties, and chemical structure. However, understanding how the HEBM changes the starch chemical structure is necessary to control these modifications. Therefore, this study aimed to investigate the changes in potato starch's long- and short-range molecular order during HEBM at different environmental conditions such as oxygen (Air) and humidity content. Due to the correlation between the starch modification and the energy supplied (Esupp) by the HEBM, Burgio's equation was used to calculate this energy. The starch transformation was followed by X-ray diffraction, Fourier Transform-Infrared Spectroscopy, and Raman spectroscopy. A Principal Component Analysis (PCA) was conducted to reduce the HEBM variables. PAC analysis demonstrated that the different oxygen-humidity conditions do not affect the HEBM of potato starch. Based on the starch chemical structure transformation correlated with Esupp during HEBM, four stages were observed: orientation, modification, mechanolysis, and over-destruction. It was identified for the first time that at low milling energy (<1.5 kJ/g, orientation stage), the glycosidic rings change their orientation, and starch-water interaction increases while the starch's organization reduces. Ergo, the potato starch could be more susceptible to chemical modifications during the first two stages.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/química , Amilosa/química , Humedad , Oxígeno , Almidón/química , Difracción de Rayos X
2.
Food Res Int ; 140: 109870, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33648188

RESUMEN

Pure potato starch has been modified by high-energy-ball-milling as a function of energy supplied, aiming to obtain products for different possibilities of industrial application. Burgios's equation has been used to calculate the energy supplied. The effect of the milling has been followed by a characterization of the starch morphology, crystallinity, solubility, swelling, retrogradation, viscosity, apparent viscosity, functional groups, and reducing sugar concentration. The high-energy-ball-milling not only changes the physical properties but also induces the mechanolysis of potato starch, breaking the glycosidic linkages of the starch molecules. A representation of the possible mechanism of starch mechanolysis is proposed. Three stages of the transformation of potato starch through high-energy ball-milling can be identified. Each of these stages generates starch with properties that can be used in different industrial applications.


Asunto(s)
Solanum tuberosum , Solubilidad , Almidón , Viscosidad
3.
Acta Crystallogr B ; 62(Pt 3): 424-30, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16710061

RESUMEN

The compressibilities of the nitridosilicate SrYb[Si(4)N(7)] and the oxonitridoaluminosilicates MYb[Si(4-x)Al(x)O(x)N(7-x)] (x = 2; M = Sr, Ba) were investigated by in situ high-pressure X-ray powder diffraction. Pressures up to 42 GPa were generated using the diamond-anvil cell technique. The title compounds are structurally stable to the highest pressure obtained. A fit of a third-order Birch-Murnaghan equation-of-state to the p-V data results in V(0) = 302.91 (6) A(3), B(0) = 176 (2) GPa and B' = 4.4 (2) for SrYb[Si(4)N(7)]; V(0) = 310.4 (1) A(3), B(0) = 161 (2) GPa and B' = 4.6 (2) for SrYb[Si(4-x)Al(x)O(x)N(7-x)]; and V(0) = 317.3 (5) A(3), B(0) = 168 (2) GPa and B' = 4.7 (2) for BaYb[Si(4-x)Al(x)O(x)N(7-x)]. While the linear compressibilities of the a and c axes of BaYb[Si(4-x)Al(x)O(x)N(7-x)] are very similar up to 30 GPa, distinct differences were observed for SrYb[Si(4)N(7)] and SrYb[Si(4-x)Al(x)O(x)N(7-x)], with the c axis being the most compressible axis. In all of the investigated compounds the bulk compressibility is dominated by the compression behaviour of the tetrahedral network, while the size of the substituted cation plays a minor role.

4.
Acta Crystallogr B ; 61(Pt 1): 11-6, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15659852

RESUMEN

Single microcrystals of the new compound samarium dimanganese germanium oxide, SmMn2GeO7, were grown using the flux method in a double spherical mirror furnace (DSMF). The micrometric crystals were observed and chemically analysed with scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDX). The structural characterization and chemical analysis of these crystals were also carried out using transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), together with electron-energy-loss spectroscopy (EELS). We found that the new quaternary compound crystallizes in the orthorhombic system with the point group mmm (D2h), space group Immm (No. 71) and cell parameters a=8.30 (10), b=8.18 (10), c=8.22 (10) A and V=558.76 A3.


Asunto(s)
Germanio/química , Manganeso/química , Microscopía Electrónica/métodos , Oxígeno/química , Samario/química , Cristalografía/métodos , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA