Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Int ; 191: 108970, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197373

RESUMEN

South Korea and China have implemented increasingly stringent mitigation measures to reduce the health risks from PM2.5 exposure, jointly conducting a ground-based air quality observation study in Northeast Asia. Dispersion normalized positive matrix factorization (DN-PMF) was used to identify PM2.5 sources in Seoul and Beijing and assess the effectiveness of the seasonal management programs (SMPs) through a comparative study. Samples were collected during three periods: January-December 2019, September 2020-May 2021, and July 2021-March 2022. In Seoul, ten sources were resolved (Secondary nitrate: 8.67 µg/m3, 34 %, Secondary sulfate: 5.67 µg/m3, 22 %, Motor vehicle: 1.83 µg/m3, 7.2 %, Biomass burning: 2.30 µg/m3, 9.1 %, Residual oil combustion: 1.66 µg/m3, 6.5 %, Industry: 2.15 µg/m3, 8.5 %, Incinerator: 1.39 µg/m3, 5.5 %, Coal combustion: 0.363 µg/m3, 1.4 %, Road dust/soil: 0.941 µg/m3, 3.7 %, Aged sea salt: 0.356 µg/m3, 1.4 %). The SMP significantly decreased PM2.5 mass concentrations and source contributions of motor vehicle, residual oil combustion, industry, coal combustion, and biomass burning sources (p-value < 0.05). For Seoul, the reduction effects of the SMPs were evident even considering the influence of the natural meteorological variations and the responses to COVID-19. In Beijing, nine sources were resolved (Secondary nitrate: 12.6 µg/m3, 28 %, Sulfate: 8.27 µg/m3, 18 %, Motor vehicle: 3.77 µg/m3, 8.4 %, Biomass burning: 2.70 µg/m3, 6.0 %, Incinerator: 4.50 µg/m3, 10 %, Coal combustion: 3.52 µg/m3, 7.8 %, Industry: 5.01 µg/m3, 11 %, Road dust/soil: 2.92 µg/m3, 6.5 %, Aged sea salt: 1.63 µg/m3, 3.6 %). Significant reductions in PM2.5 mass concentrations and source contributions of industry, coal combustion, and incinerator (p-value < 0.05) were observed, attributed to the SMP and additional measures enforced before the 2022 Beijing Winter Olympics. Unlike comparing PM2.5 mass concentration variations using conventional methods, investigation of the source contribution variations of PM2.5 by using DN-PMF can provide a deeper understanding of the effectiveness of the air quality management policies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Estaciones del Año , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Beijing , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/análisis , China , Seúl , República de Corea
2.
Sci Total Environ ; 881: 163524, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37075994

RESUMEN

This study used observational data and a chemical transport model to investigate the contributions of several factors to the recent change in air quality in China and South Korea from 2016 to 2020. We focused on observational data analysis, which could reflect the annual trend of emission reduction and adjust existing emission amounts to apply it into a chemical transport model. The observation data showed that the particulate matter (PM2.5) concentrations during winter 2020 decreased by -23.4 % (-14.68 µg/m3) and - 19.5 % (-5.73 µg/m3) in China and South Korea respectively, compared with that during winter 2016. Meteorological changes, the existing national plan for a long-term emission reduction target, and unexpected events (i.e., Coronavirus disease 2019 (COVID-19) in China and South Korea and the newly introduced special winter countermeasures in South Korea from 2020) are considered major factors that may affect the recent change in air quality. The impact of different meteorological conditions on PM2.5 concentrations was assessed by conducting model simulations by fixing the emission amounts; the results indicated changes of +7.6 % (+4.77 µg/m3) and + 9.7 % (+2.87 µg/m3) in China and South Korea, respectively, during winter 2020 compared to that during winter 2016. Due to the existing and pre-defined long-term emission control policies implemented in both countries, PM2.5 concentration significantly decreased from winter 2016-2020 in China (-26.0 %; -16.32 µg/m3) and South Korea (-9.1 %; -2.69 µg/m3). The unexpected COVID-19 outbreak caused the PM2.5 concentrations in China to decrease during winter 2020 by another -5.0 % (-3.13 µg/m3). In South Korea, the winter season special reduction policy, which was introduced and implemented in winter 2020, and the COVID-19 pandemic may have contributed to -19.5 % (-5.92 µg/m3) decrease in PM2.5 concentrations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Contaminantes Atmosféricos/análisis , Pandemias , Monitoreo del Ambiente/métodos , COVID-19/epidemiología , Contaminación del Aire/análisis , Material Particulado/análisis , China/epidemiología , República de Corea/epidemiología , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA