Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Adv Mater ; : e2410191, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194394

RESUMEN

Due to its area and energy efficiency, a memristive crossbar array (CBA) has been extensively studied for various combinatorial optimization applications, from network problems to circuit design. However, conventional approaches include heavily burdening software fine-tuning for the annealing process. Instead, this study introduces the "in-materia annealing" method, where the inter-layer interference of vertically stacked memristive CBA is utilized as an annealing method. When mapping combinatorial optimization problems into the configuration layer of the CBA, exponentially decaying annealing profiles are generated in nearby noise layers. Moreover, in-materia annealing profiles can be controlled by changing compliance current, read voltage, and read pulse width. Therefore, the annealing profiles can be arbitrarily controlled and generated individually for each cell, providing rich noise sources to solve the problem efficiently. Consequently, the experimental and simulation of Max-Cut and weighted Max-Cut problems achieve notable results with the minimum software burden.

2.
Phytopathology ; 114(8): 1917-1925, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135297

RESUMEN

The rice blast fungus Magnaporthe oryzae poses a significant challenge to maintaining rice production. Developing rice varieties with resistance to this disease is crucial for its effective control. To understand the genetic variability of blast isolates collected between 2015 and 2017, the 27 monogenic rice lines that carry specific resistance genes were used to evaluate blast disease reactions. Based on criteria such as viability, virulence, and reactions to resistance genes, 20 blast isolates were selected as representative strains. To identify novel resistance genes, a quantitative trait locus analysis was carried out utilizing a mixture of the 20 representative rice blast isolates and a rice population derived from crossing the blast-resistant cultivar 'Cheongcheong' with the blast-susceptible cultivar 'Nagdong'. This analysis revealed a significant locus, RM1227-RM1261 on chromosome 12, that is associated with rice blast resistance. Within this locus, 12 disease resistance-associated protein genes were identified. Among them, OsDRq12, a member of the nucleotide-binding, leucine-rich repeat disease resistance family, was chosen as the target gene for additional computational investigation. The findings of this study have significant implications for enhancing rice production and ensuring food security by controlling rice blast and developing resistant rice cultivars.


Asunto(s)
Resistencia a la Enfermedad , Variación Genética , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Oryza/inmunología , Oryza/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Sitios de Carácter Cuantitativo/genética , Genes de Plantas/genética , Ascomicetos/genética , Ascomicetos/patogenicidad , Ascomicetos/fisiología , Proteínas de Plantas/genética , Magnaporthe/genética , Magnaporthe/patogenicidad , Magnaporthe/fisiología
3.
iScience ; 27(8): 110495, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148712

RESUMEN

The isolation of a natural product conventionally precedes its chemical synthesis. Often, the isolation and structure determination of a natural product present in minute quantities in its natural source pose formidable challenges, akin to finding "a needle in a haystack." On the other hand, leveraging plausible biosynthetic insights and biomimetic synthetic expertise would allow for the prior synthesis of presumed natural products, followed by their verification in natural sources. In this study, we unveil two novel securinega alkaloids, securingines H and I, employing the natural product anticipation through synthesis approach. Structural analysis of securingines H and I suggests that they are biosynthetic derivatives of secu'amamine E and securinol A, respectively. We posit that this "synthesis first" strategy represents a valuable approach to the discovery of new natural products.

4.
Rice (N Y) ; 17(1): 48, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115620

RESUMEN

BACKGROUND: Photoperiod sensitivity is among the most important agronomic traits of rice, as it determines local and seasonal adaptability and plays pivotal roles in determining yield and other key agronomic characteristics. By controlling the photoperiod, early-maturing rice can be cultivated to shorten the breeding cycle, thereby reducing the risk of yield losses due to unpredictable climate change. Furthermore, early-maturing and high-yielding rice needs to be developed to ensure food security for a rapidly growing population. Early-maturing and high-yielding rice should be developed to fulfill these requirements. OsCKq1 encodes the casein kinase1 protein in rice. OsCKq1 is a gene that is activated by photophosphorylation when Ghd7, which suppresses flowering under long-day conditions, is activated. RESULTS: This study investigates how OsCKq1 affects heading in rice. OsCKq1-GE rice was analyzed the function of OsCKq1 was investigated by comparing the expression levels of genes related to flowering regulation. The heading date of OsCKq1-GE lines was earlier (by about 3 to 5 days) than that of Ilmi (a rice cultivar, Oryza sativa spp. japonica), and the grain length, grain width, 1,000-grain weight, and yield increased compared to Ilmi. Furthermore, the culm and panicle lengths of OsCKq1-GE lines were either equal to or longer than those of Ilmi. CONCLUSIONS: Our research demonstrates that OsCKq1 plays a pivotal role in regulating rice yield and photoperiod sensitivity. Specifically, under long-day conditions, OsCKq1-GE rice exhibited reduced OsCKq1 mRNA levels alongside increased mRNA levels of Hd3a, Ehd1, and RFT1, genes known for promoting flowering, leading to earlier heading compared to Ilmi. Moreover, we observed an increase in seed size. These findings underscore OsCKq1 as a promising target for developing early-maturing and high-yielding rice cultivars, highlighting the potential of CRISPR/Cas9 technology in enhancing crop traits.

5.
J Pers Med ; 14(8)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39202018

RESUMEN

In this study, we aimed to demonstrate the feasibility and safety of navigating the ureters, middle sacral artery (MSA), and superior hypogastric nerve (SHN) using indocyanine green (ICG) and near-infrared fluorescence (NIRF) imaging during robot-assisted sacrocolpopexy (RSCP). Overall, 15 patients who underwent RSCP for apical vaginal prolapse were retrospectively enrolled. All patients underwent cystoscopic intraureteric instillation of 5 cc ICG (2.5 mg/mL) before RSCP and intravenous injection of 3 cc ICG during presacral dissection and mesh fixation. In all patients, the fluorescent right ureter was clearly identified in real time. The MSA was visualized on ICG-NIRF images in 80% (13/15) of patients. The mean time from ICG injection to MSA visualization was 43.7 s; the mean duration of the arterial phase was 104.3 s. Fluorescent SHN was detected in 73.3% (11/15) of patients. The time from ICG injection to SHN fluorescence was 48.4 s; the duration of fluorescence was 177.2 s. There was no transfusion, iatrogenic ureteral injury, or bowel or urinary dysfunction. Our results indicated that intraoperative ureter, MSA, and SHN mapping using ICG-NIRF images during RSCP is a valuable and safe technique to avoid iatrogenic ureteral, vascular, and neural injuries and to simplify surgical procedures. Nonetheless, further studies are required.

6.
Cell Rep ; 43(9): 114659, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180750

RESUMEN

Empathy, crucial for social interaction, is impaired across various neuropsychiatric conditions. However, the genetic and neural underpinnings of empathy variability remain elusive. By combining forward genetic mapping with transcriptome analysis, we discover that aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a key driver modulating observational fear, a basic form of affective empathy. Disrupted ARNT2 expression in the anterior cingulate cortex (ACC) reduces affect sharing in mice. Specifically, selective ARNT2 ablation in somatostatin (SST)-expressing interneurons leads to decreased pyramidal cell excitability, increased spontaneous firing, aberrant Ca2+ dynamics, and disrupted theta oscillations in the ACC, resulting in reduced vicarious freezing. We further demonstrate that ARNT2-expressing SST interneurons govern affective state discrimination, uncovering a potential mechanism by which ARNT2 polymorphisms associate with emotion recognition in humans. Our findings advance our understanding of the molecular mechanism controlling empathic capacity and highlight the neural substrates underlying social affective dysfunctions in psychiatric disorders.

7.
ACS Appl Mater Interfaces ; 16(32): 42884-42893, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39088726

RESUMEN

This work demonstrates a physical reservoir using a back-end-of-line compatible thin-film transistor (TFT) with tin monoxide (SnO) as the channel material for neuromorphic computing. The electron trapping and time-dependent detrapping at the channel interface induce the SnO·TFT to exhibit fading memory and nonlinearity characteristics, the critical assets for physical reservoir computing. The three-terminal configuration of the TFT allows the generation of higher-dimensional reservoir states by simultaneously adjusting the bias conditions of the gate and drain terminals, surpassing the performances of typical two-terminal-based reservoirs such as memristors. The high-dimensional SnO TFT reservoir performs exceptionally in two benchmark tests, achieving a 94.1% accuracy in Modified National Institute of Standards and Technology handwritten number recognition and a normalized root-mean-square error of 0.089 in Mackey-Glass time-series prediction. Furthermore, it is suitable for vertical integration because its fabrication temperature is <250 °C, providing the benefit of achieving a high integration density.

8.
Cancer Res Treat ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38965926

RESUMEN

Purpose: In Korea, the act on hospice and palliative care and decisions on life-sustaining treatment (LST) was implemented on February 4, 2018. We aimed to investigate relevant factors and clinical changes associated with LST decisions after law enforcement. Materials and Methods: This single-center retrospective study included patients who completed LST documents using legal forms at Asan Medical Center from February 5, 2018, to June 30, 2020. Results: 5896 patients completed LST documents, of which 2704 (45.8%) signed the documents in person, while family members of 3,192 (54%) wrote the documents on behalf of the patients. Comparing first year and following year of implementation of the act, the self-documentation rate increased (43.9% to 47.2%, p=0.014). Moreover, the number of LST decisions made during or after ICU admission decreased (37.8% vs. 35.2%, p=0.045), and the completion rate of LST documents during chemotherapy increased (6.6% vs. 8.9%, p=0.001). In multivariate analysis, age < 65 (OR, 1.724; 95% CI, 1.538-1.933; p<0.001), unmarried status (OR, 1.309; 95% CI, 1.097-1.561; p=0.003), palliative care consultation (OR, 1.538; 95% CI, 1.340-1.765; p<0.001), malignancy (OR, 1.864; 95% CI, 1.628-2.133; p<0.001), and changes in timing on the first year versus following year (OR, 1.124, 95% CI, 1.003-1.260, p=0.045) were related to a higher self-documentation rate. Conclusion: Age < 65, unmarried status, malignancy, and referral to a palliative care team were associated with patients making LST decisions themselves. Furthermore, the subject and timing of LST decisions have changed with the LST act.

9.
ACS Nano ; 18(26): 17007-17017, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952324

RESUMEN

Neuromorphic computing promises an energy-efficient alternative to traditional digital processors in handling data-heavy tasks, primarily driven by the development of both volatile (neuronal) and nonvolatile (synaptic) resistive switches or memristors. However, despite their energy efficiency, memristor-based technologies presently lack functional tunability, thus limiting their competitiveness with arbitrarily programmable (general purpose) digital computers. This work introduces a two-terminal bilayer memristor, which can be tuned among neuronal, synaptic, and hybrid behaviors. The varying behaviors are accessed via facile control over the filament formed within the memristor, enabled by the interplay between the two active ionic species (oxygen vacancies and metal cations). This solution is unlike single-species ion migration employed in most other memristors, which makes their behavior difficult to control. By reconfiguring a single crossbar array of hybrid memristors, two different applications that usually require distinct types of devices are demonstrated - reprogrammable heterogeneous reservoir computing and arbitrary non-Euclidean graph networks. Thus, this work outlines a potential path toward functionally reconfigurable postdigital computers.

10.
Plant Physiol Biochem ; 214: 108941, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029307

RESUMEN

Arsenic, a hazardous heavy metal with potent carcinogenic properties, significantly affects key rice-producing regions worldwide. In this study, we present a quantitative trait locus (QTL) mapping investigation designed to identify candidate genes responsible for conferring tolerance to arsenic toxicity in rice (Oryza sativa L.) during the seedling stage. This study identified 17 QTLs on different chromosomes, including qCHC-1 and qCHC-3 on chromosome 1 and 3 related to chlorophyll content and qRFW-12 on chromosome 12 related to root fresh weight. Gene expression analysis revealed eight candidate genes exhibited significant upregulation in the resistant lines, OsGRL1, OsDjB1, OsZIP2, OsMATE12, OsTRX29, OsMADS33, OsABCG29, and OsENODL24. These genes display sequence alignment and phylogenetic tree similarities with other species and engaging in protein-protein interactions with significant proteins. Advanced gene-editing techniques such as CRISPR-Cas9 to precisely target and modify the candidate genes responsible for arsenic tolerance will be explore. This approach may expedite the development of arsenic-resistant rice cultivars, which are essential for ensuring food security in regions affected by arsenic-contaminated soil and water.


Asunto(s)
Arsénico , Oryza , Sitios de Carácter Cuantitativo , Estrés Fisiológico , Oryza/genética , Oryza/efectos de los fármacos , Oryza/metabolismo , Arsénico/toxicidad , Sitios de Carácter Cuantitativo/genética , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de los fármacos , Haploidia , Mapeo Cromosómico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cromosomas de las Plantas/genética
11.
Adv Mater ; 36(36): e2403904, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39030848

RESUMEN

Modern graph datasets with structural complexity and uncertainties due to incomplete information or data variability require advanced modeling techniques beyond conventional graph models. This study introduces a memristive crossbar array (CBA)-based probabilistic graph model (C-PGM) utilizing Cu0.3Te0.7/HfO2/Pt memristors, which exhibit probabilistic switching, self-rectifying, and memory characteristics. C-PGM addresses the complexities and uncertainties inherent in structural graph data across various domains, leveraging the probabilistic nature of memristors. C-PGM relies on the device-to-device variation across multiple memristive CBAs, overcoming the limitations of previous approaches that rely on sequential operations, which are slower and have a reliability concern due to repeated switching. This new approach enables the fast processing and massive implementation of probabilistic units at the expense of chip area. In this study, the hardware-based C-PGM feasibly expresses small-scale probabilistic graphs and shows minimal error in aggregate probability calculations. The probability calculation capabilities of C-PGM are applied to steady-state estimation and the PageRank algorithm, which is implemented on a simulated large-scale C-PGM. The C-PGM-based steady-state estimation and PageRank algorithm demonstrate comparable accuracy to conventional methods while significantly reducing computational costs.

12.
Mater Horiz ; 11(18): 4493-4506, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38979717

RESUMEN

In the big data era, the requirement for data clustering methods that can handle massive and heterogeneous datasets with varying distributions increases. This study proposes a clustering algorithm for data sets with heterogeneous density using a dual-mode memristor crossbar array for data clustering. The array consists of a Ta/HfO2/RuO2 memristor operating in analog or digital modes, controlled by the reset voltage. The digital mode shows low dispersion and a high resistance ratio, and the analog mode enables precise conductance tuning. The local outlier factor is introduced to handle a heterogeneous density, and the required Euclidean and K-distances within the given dataset are calculated in the analog mode in parallel. In the digital mode, clustering is performed based on the connectivity among data points after excluding the detected outliers. The proposed algorithm boasts linear time complexity for the entire process. Extensive evaluations of synthetic datasets demonstrate significant improvement over representative density-based algorithms, and the datasets with heterogeneous density are clustered feasibly. Finally, the proposed algorithm is used to cluster the single-molecule localization microscopy data, demonstrating the feasibility of the suggested method for real-world problems.

13.
Cancers (Basel) ; 16(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39001408

RESUMEN

Rising cancer survival rates have led to an increased risk of multiple primary cancers (MPCs). Data on MPCs in South Korea are limited. This study aimed to address incidence and clinical characteristics of MPCs in a single cancer center in Korea during a 20-year period. We retrospectively analyzed 96,174 cancer patients at the Korea Cancer Center Hospital between 2003 and 2022, identifying 2167 patients with metachronous MPCs based on Surveillance, Epidemiology, and End Results SEER criteria. We categorized patients by cancer type (15 major solid cancer groups and 3 major hematologic cancer groups), including pathological diagnosis, assessed latency periods, and relative risks (RRs) for developing MPCs. The overall MPC incidence was 2.3%. Breast cancer (15.7%) was the most common primary cancer, and lung cancer (15.2%) was the most frequent second primary cancer. The median latency period for second primary cancers was 4.1 years. Decreasing latency periods for third and fourth primary cancers were observed (2.1 years and 1.6 years, respectively). Most cancers maintained their dominant pathological type despite notable changes in the prevalence of specific pathologies for certain types of second primaries. Lymphoma showed the highest RR (2.1) for developing MPCs. Significant associations were found between specific primary and subsequent cancers, including breast-ovary, thyroid-breast, stomach-pancreas, colorectal-head and neck, lung-prostate, and lymphoma-myeloid neoplasms. These findings contribute to a better understanding of MPC occurrence. They can inform future research on their etiology and development of improved management strategies.

14.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892350

RESUMEN

Periodontitis is an inflammatory disease caused by Porphyromonas gingivalis (P. gingivalis) in the oral cavity. This periodontal disease causes damage to the periodontal ligament and alveolar bone and can cause tooth loss, but there is no definite treatment yet. In this study, we investigated the possibility of using no-ozone cold plasma to safely treat periodontitis in the oral cavity. First, human gingival fibroblasts (HGFs) were treated with P. gingivalis-derived lipopolysaccharide (PG-LPS) to induce an inflammatory response, and then the anti-inflammatory effect of NCP was examined, and a study was conducted to identify the mechanism of action. Additionally, the anti-inflammatory effect of NCP was verified in rats that developed an inflammatory response similar to periodontitis. When NCP was applied to PG-LPS-treated HGFs, the activities of inflammatory proteins and cytokines were effectively inhibited. It was confirmed that the process of denaturing the medium by charged particles of NCP is essential for the anti-inflammatory effect of NCP. Also, it was confirmed that repeated treatment of periodontitis rats with NCP effectively reduced the inflammatory cells and osteoclast activity. As a result, this study suggests that NCP can be directly helpful in the treatment of periodontitis in the future.


Asunto(s)
Antiinflamatorios , Fibroblastos , Encía , Lipopolisacáridos , Periodontitis , Porphyromonas gingivalis , Animales , Periodontitis/microbiología , Periodontitis/tratamiento farmacológico , Ratas , Antiinflamatorios/farmacología , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ozono/farmacología , Gases em Plasma/farmacología , Gases em Plasma/uso terapéutico , Masculino , Citocinas/metabolismo , Modelos Animales de Enfermedad , Óxido Nítrico/metabolismo , Células Cultivadas
16.
Nanoscale Adv ; 6(11): 2892-2902, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817425

RESUMEN

Bayesian networks and Bayesian inference, which forecast uncertain causal relationships within a stochastic framework, are used in various artificial intelligence applications. However, implementing hardware circuits for the Bayesian inference has shortcomings regarding device performance and circuit complexity. This work proposed a Bayesian network and inference circuit using a Cu0.1Te0.9/HfO2/Pt volatile memristor, a probabilistic bit neuron that can control the probability of being 'true' or 'false.' Nodal probabilities within the network are feasibly sampled with low errors, even with the device's cycle-to-cycle variations. Furthermore, Bayesian inference of all conditional probabilities within the network is implemented with low power (<186 nW) and energy consumption (441.4 fJ), and a normalized mean squared error of ∼7.5 × 10-4 through division feedback logic with a variational learning rate to suppress the inherent variation of the memristor. The suggested memristor-based Bayesian network shows the potential to replace the conventional complementary metal oxide semiconductor-based Bayesian estimation method with power efficiency using a stochastic computing method.

17.
Anal Chim Acta ; 1306: 342623, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692796

RESUMEN

BACKGROUND: Brain-derived exosomes circulate in the bloodstream and other bodily fluids, serving as potential indicators of neurological disease progression. These exosomes present a promising avenue for the early and precise diagnosis of neurodegenerative conditions. Notably, miRNAs found in plasma extracellular vesicles (EVs) offer distinct diagnostic benefits due to their stability, abundance, and resistance to breakdown. RESULTS: In this study, we introduce a method using transferrin conjugated magnetic nanoparticles (TMNs) to isolate these exosomes from the plasma of patients with neurological disorders. This TMNs technique is both quick (<35 min) and cost-effective, requiring no high-priced ingredients or elaborate equipment for EV extraction. Our method successfully isolated EVs from 33 human plasma samples, including those from patients with Parkinson's disease (PD), Multiple Sclerosis (MS), and Dementia. Using quantitative polymerase chain reaction (PCR) analysis, we evaluated the potential of 8 exosomal miRNA profiles as biomarker candidates. Six exosomal miRNA biomarkers (miR-195-5p, miR-495-3p, miR-23b-3P, miR-30c-2-3p, miR-323a-3p, and miR-27a-3p) were consistently linked with all stages of PD. SIGNIFICANCE: The TMNs method provides a practical, cost-efficient way to isolate EVs from biological samples, paving the way for non-invasive neurological diagnoses. Furthermore, the identified miRNA biomarkers in these exosomes may emerge as innovative tools for precise diagnosis in neurological disorders including PD.


Asunto(s)
Exosomas , Nanopartículas de Magnetita , MicroARNs , Enfermedad de Parkinson , Transferrina , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/sangre , Exosomas/química , MicroARNs/sangre , Nanopartículas de Magnetita/química , Transferrina/química , Encéfalo/metabolismo , Biomarcadores/sangre , Masculino , Femenino
18.
Materials (Basel) ; 17(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38730769

RESUMEN

Polypyrrole (PPy)-capped silver nanowire (Ag NW) nanomaterials (core-shell rod-shaped Ag NW@PPy) were synthesized using a one-port suspension polymerization technique. The thickness of the PPy layer on the 50 nm thickness/15 µm length Ag NW was effectively controlled to 10, 40, 50, and 60 nm. Thin films cast from one-dimensional conductive Ag NW@PPy formed a three-dimensional (3D) conductive porous network structure and provided excellent electrochemical performance. The 3D Ag NW@PPy network can significantly reduce the internal resistance of the electrode and maintain structural stability. As a result, a high specific capacitance of 625 F/g at a scan rate of 1 mV/s was obtained from the 3D porous Ag NW@PPy composite film. The cycling performance over a long period exceeding 10,000 cycles was also evaluated. We expect that our core-shell-structured Ag NW@PPy composites and their 3D porous structure network films can be applied as electrochemical materials for the design and manufacturing of supercapacitors and other energy storage devices.

19.
Oncol Lett ; 27(5): 211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572064

RESUMEN

The present retrospective study investigated the clinical features and prognosis of secondary hematological malignancies (SHMs) in patients with sarcoma at Korea Cancer Center Hospital (Seoul, South Korea). Patients who had been diagnosed with SHMs after having received treatment for sarcoma between January 2000 and May 2023 were enrolled. Clinical data were collected from the patients' medical records. Clinical characteristics were analyzed, including SHM incidence, type and prognosis. Of 2,953 patients with sarcoma, 18 (0.6%) were diagnosed with SHMs. Their median age at the time of sarcoma diagnosis was 39.5 (range, 9-72) years, and 74% (n=14) of these patients were male. The histological features of sarcoma varied, with osteosarcoma diagnosed in nine patients (50%). All patients with sarcoma underwent surgical treatment, and 16 (88.8%) received chemotherapy. The most common type of SHMs was acute myeloid leukemia (n=6; 33.3%), followed by myelodysplastic syndrome (n=5; 27.7%). The median latency period between the sarcoma diagnosis and SHM identification was 30 (range, 11-121) months. A total of 13 (72.2%) patients received treatment for the SHM. The median overall survival after SHM diagnosis was 15.7 (range, 0.4-154.9) months. The incidence of SHMs in sarcoma in the present study was consistent with that reported previously. The presence of SHMs was associated with a poor patient prognosis, especially if treatment for SHMs was not administered.

20.
bioRxiv ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38558995

RESUMEN

The histone methyltransferase Polycomb repressive complex 2 (PRC2) is required for specification of the neural crest, and mis-regulation of neural crest development can cause severe congenital malformations. PRC2 is necessary for neural crest induction, but the embryonic, cellular, and molecular consequences of PRC2 activity after neural crest induction are incompletely understood. Here we show that Eed, a core subunit of PRC2, is required for craniofacial osteoblast differentiation and mesenchymal proliferation after induction of the neural crest. Integrating mouse genetics with single-cell RNA sequencing, our results reveal that conditional knockout of Eed after neural crest cell induction causes severe craniofacial hypoplasia, impaired craniofacial osteogenesis, and attenuated craniofacial mesenchymal cell proliferation that is first evident in post-migratory neural crest cell populations. We show that Eed drives mesenchymal differentiation and proliferation in vivo and in primary craniofacial cell cultures by regulating diverse transcription factor programs that are required for specification of post-migratory neural crest cells. These data enhance understanding of epigenetic mechanisms that underlie craniofacial development, and shed light on the embryonic, cellular, and molecular drivers of rare congenital syndromes in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA