Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21254004

RESUMEN

The immunological picture of how different patients recover from COVID-19, and how those recovery trajectories are influenced by infection severity, remain unclear. We investigated 140 COVID-19 patients from diagnosis to convalescence using clinical data, viral load assessments, and multi-omic analyses of blood plasma and circulating immune cells. Immune-phenotype dynamics resolved four recovery trajectories. One trajectory signals a return to pre-infection healthy baseline, while the other three are characterized by differing fractions of persistent cytotoxic and proliferative T cells, distinct B cell maturation processes, and memory-like innate immunity. We resolve a small panel of plasma proteins that, when measured at diagnosis, can predict patient survival and recovery-trajectory commitment. Our study offers novel insights into post-acute immunological outcomes of COVID-19 that likely influence long-term adverse sequelae.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21250129

RESUMEN

BackgroundThere is an urgent need for tools allowing the early prognosis and subsequent monitoring of individuals with heterogeneous COVID-19 disease trajectories. Pre-existing cardiovascular (CV) disease is a leading risk factor for COVID-19 susceptibility and poor outcomes, and cardiac involvement is prevalent in COVID-19 patients both during the acute phase as well as in convalescence. The utility of traditional CV risk biomarkers in mild COVID-19 disease or across disease course is poorly understood. We sought to determine if a previously validated 27-protein predictor of CV outcomes served a purpose in COVID-19. MethodsThe 27-protein test of residual CV (RCV) risk was applied without modification to n=860 plasma samples from hospitalized and non-hospitalized SARS-CoV-2 infected individuals at disease presentation from three independent cohorts to predict COVID-19 severity and mortality. The same test was applied to an additional n=991 longitudinal samples to assess sensitivity to change in CV risk throughout the course of infection into convalescence. ResultsIn each independent cohort, RCV predictions were significantly related to maximal subsequent COVID-19 severity and to mortality. At the baseline blood draw, the mean protein-predicted likelihood of an event in subjects who died during the study period ranged from 88-99% while it ranged from 8-36% in subjects who were not admitted to hospital. Additionally, the test outperformed existing risk predictors based on commonly used laboratory chemistry values or presence of comorbidities. Application of the RCV test to sequential samples showed dramatic increases in risk during the first few days of infection followed by risk reduction in the survivors; a period of catastrophically high cardiovascular risk (above 50%) typically lasted 8-12 days and had not resolved to normal levels in most people within that timescale. ConclusionsThe finding that a 27-protein candidate CV surrogate endpoint developed in multi-morbid patients prior to the pandemic is both prognostic and acutely sensitive to the adverse effects of COVID-19 suggests that this disease activates the same biologic risk-related mechanisms. The test may be useful for monitoring recovery and drug response.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20212803

RESUMEN

BackgroundData on the characteristics of COVID-19 patients disaggregated by race/ethnicity remain limited. We evaluated the sociodemographic and clinical characteristics of patients across racial/ethnic groups and assessed their associations with COVID-19 outcomes. MethodsThis retrospective cohort study examined 629,953 patients tested for SARS-CoV-2 in a large health system spanning California, Oregon, and Washington between March 1 and December 31, 2020. Sociodemographic and clinical characteristics were obtained from electronic health records. Odds of SARS-CoV-2 infection, COVID-19 hospitalization, and in-hospital death were assessed with multivariate logistic regression. Results570,298 patients with known race/ethnicity were tested for SARS-CoV-2, of whom 27.8% were non-White minorities. 54,645 individuals tested positive, with minorities representing 50.1%. Hispanics represented 34.3% of infections but only 13.4% of tests. While generally younger than White patients, Hispanics had higher rates of diabetes but fewer other comorbidities. 8,536 patients were hospitalized and 1,246 died, of whom 56.1% and 54.4% were non-White, respectively. Racial/ethnic distributions of outcomes across the health system tracked with state-level statistics. Increased odds of testing positive and hospitalization were associated with all minority races/ethnicities. Hispanic patients also exhibited increased morbidity, and Hispanic race/ethnicity was associated with in-hospital mortality (OR: 1.39 [95% CI: 1.14-1.70]). ConclusionMajor healthcare disparities were evident, especially among Hispanics who tested positive at a higher rate, required excess hospitalization and mechanical ventilation, and had higher odds of in-hospital mortality despite younger age. Targeted, culturally-responsive interventions and equitable vaccine development and distribution are needed to address the increased risk of poorer COVID-19 outcomes among minority populations. Key pointsRacial/ethnic disparities are evident in the disaggregated characteristics of COVID-19 patients. Minority patients experience increased odds of SARS-CoV-2 infection and COVID-19 hospitalization. Hospitalized Hispanic patients presented with more severe illness, experienced increased morbidity, and faced increased mortality.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20192443

RESUMEN

Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a new strain harboring the spike variant D614G. With antibody and B cell analytics, we show correlates of adaptive immunity, including a differential response to D614G. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20165647

RESUMEN

T cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection. Here, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2. First, at the individual level, we deeply characterized 3 acutely infected and 58 recovered COVID-19 subjects by experimentally mapping their CD8 T-cell response through antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I presented viral peptides (class II data in a forthcoming study). Then, at the population level, we performed T-cell repertoire sequencing on 1,815 samples (from 1,521 COVID-19 subjects) as well as 3,500 controls to identify shared "public" T-cell receptors (TCRs) associated with SARS-CoV-2 infection from both CD8 and CD4 T cells. Collectively, our data reveal that CD8 T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the T-cell response to SARS-CoV-2 peaks about one to two weeks after infection and is detectable for at least several months after recovery. As an application of these data, we trained a classifier to diagnose SARSCoV-2 infection based solely on TCR sequencing from blood samples, and observed, at 99.8% specificity, high early sensitivity soon after diagnosis (Day 3-7 = 85.1% [95% CI = 79.9-89.7]; Day 8-14 = 94.8% [90.7-98.4]) as well as lasting sensitivity after recovery (Day 29+/convalescent = 95.4% [92.1-98.3]). These results demonstrate an approach to reliably assess the adaptive immune response both soon after viral antigenic exposure (before antibodies are typically detectable) as well as at later time points. This blood-based molecular approach to characterizing the cellular immune response has applications in clinical diagnostics as well as in vaccine development and monitoring.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-224063

RESUMEN

Host immune responses play central roles in controlling SARS-CoV2 infection, yet remain incompletely characterized and understood. Here, we present a comprehensive immune response map spanning 454 proteins and 847 metabolites in plasma integrated with single-cell multi-omic assays of PBMCs in which whole transcriptome, 192 surface proteins, and T and B cell receptor sequence were co-analyzed within the context of clinical measures from 50 COVID19 patient samples. Our study reveals novel cellular subpopulations, such as proliferative exhausted CD8+ and CD4+ T cells, and cytotoxic CD4+ T cells, that may be features of severe COVID-19 infection. We condensed over 1 million immune features into a single immune response axis that independently aligns with many clinical features and is also strongly associated with disease severity. Our study represents an important resource towards understanding the heterogeneous immune responses of COVID-19 patients and may provide key information for informing therapeutic development.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20085779

RESUMEN

We report here on antigens from the SARS-CoV-2 virus spike protein, that when presented by Class I MHC, can lead to cytotoxic CD8+ T cell anti-viral responses in COVID-19 patients. We present a method in which the SARS-CoV-2 spike protein is converted into a library of peptide antigen-Major Histocompatibility Complexes (pMHCs) as single chain trimers that contain the peptide antigen, the MHC HLA allele subunit, and the {beta}-2 microglobulin subunit. This library is used to detect the evolution of virus-specific T cell populations in four COVID-19 study participants two of which share one HLA allele, and the other two a second HLA allele, at two time points over the initial course of infection. HLA-matched participants exhibit similar virus-specific T cell populations, but very different time-trajectories of those populations. This strategy can be used to track those virus-specific T cell populations over the course of an infection, thus providing deep insight into the SARS-CoV-2 immune system trajectories observed in different COVID-19 patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA