Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 4(2): 102246, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37083318

RESUMEN

High-field functional magnetic resonance imaging generates in vivo retinotopic maps, but quantifying them remains challenging. Here, we present a pipeline based on conformal geometry and Teichmüller theory for the quantitative characterization of human retinotopic maps. We describe steps for cortical surface parameterization and surface-spline-based smoothing. We then detail Beltrami coefficient-based mapping, which provides a quantitative and re-constructible description of the retinotopic maps. This framework has been successfully used to analyze the Human Connectome Project's V1 retinotopic maps. For complete details on the use and execution of this protocol, please refer to Ta et al. (2022).1.

2.
J Alzheimers Dis ; 91(2): 637-651, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36463452

RESUMEN

BACKGROUND: Amyloid-ß (Aß) plaques and tau protein tangles in the brain are the defining 'A' and 'T' hallmarks of Alzheimer's disease (AD), and together with structural atrophy detectable on brain magnetic resonance imaging (MRI) scans as one of the neurodegenerative ('N') biomarkers comprise the "ATN framework" of AD. Current methods to detect Aß/tau pathology include cerebrospinal fluid (invasive), positron emission tomography (PET; costly and not widely available), and blood-based biomarkers (promising but mainly still in development). OBJECTIVE: To develop a non-invasive and widely available structural MRI-based framework to quantitatively predict the amyloid and tau measurements. METHODS: With MRI-based hippocampal multivariate morphometry statistics (MMS) features, we apply our Patch Analysis-based Surface Correntropy-induced Sparse coding and max-pooling (PASCS-MP) method combined with the ridge regression model to individual amyloid/tau measure prediction. RESULTS: We evaluate our framework on amyloid PET/MRI and tau PET/MRI datasets from the Alzheimer's Disease Neuroimaging Initiative. Each subject has one pair consisting of a PET image and MRI scan, collected at about the same time. Experimental results suggest that amyloid/tau measurements predicted with our PASCP-MP representations are closer to the real values than the measures derived from other approaches, such as hippocampal surface area, volume, and shape morphometry features based on spherical harmonics. CONCLUSION: The MMS-based PASCP-MP is an efficient tool that can bridge hippocampal atrophy with amyloid and tau pathology and thus help assess disease burden, progression, and treatment effects.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Atrofia/patología , Biomarcadores/líquido cefalorraquídeo , Hipocampo/patología , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA