Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891825

RESUMEN

This study aimed to investigate the availability of flavonoids, anthocyanins, and phenolic acids in mutant bean seeds, focusing on M7 mutant lines, and their corresponding initial and local cultivars. HPLC-DAD-MS/MS and HPLC-MS/MS were used to analyze twenty-eight genotypes of common bean. The obtained results suggest that the mutations resulted in four newly synthesized anthocyanins in the mutant bean seeds, namely, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, and petunidin 3-O-glucoside, in 20 accessions with colored seed shapes out of the total of 28. Importantly, the initial cultivar with white seeds, as well as the mutant white seeds, did not contain anthocyanins. The mutant lines were classified into groups based on their colors as novel qualitative characteristics. Five phenolic acids were further quantified: ferulic, p-coumaric, caffeic, sinapic, and traces of chlorogenic acids. Flavonoids were represented by epicatechin, quercetin, and luteolin, and their concentrations in the mutant genotypes were several-fold superior compared to those of the initial cultivar. All mutant lines exhibited higher concentrations of phenolic acids and flavonoids. These findings contribute to the understanding of the genetics and biochemistry of phenolic accumulation and anthocyanin production in common bean seeds, which is relevant to health benefits and might have implications for common bean breeding programs and food security efforts.


Asunto(s)
Antocianinas , Mutación , Phaseolus , Polifenoles , Semillas , Semillas/genética , Semillas/metabolismo , Semillas/química , Phaseolus/genética , Phaseolus/metabolismo , Polifenoles/biosíntesis , Antocianinas/biosíntesis , Flavonoides/biosíntesis , Flavonoides/metabolismo , Genotipo , Hidroxibenzoatos/metabolismo , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem
2.
Foods ; 12(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37444356

RESUMEN

Potatoes are one of the most consumed crops worldwide. They contain a high amount of bioactive compounds such as phenolic compounds and vitamins with important antioxidant activities, which makes this crop of high biological value for human health. The goal of this research was to biochemically evaluate polyphenol levels and antioxidant capacities in parent and control genotypes compared to advanced mutant potato lines in the M1V8 generation. This will reveal the genetic changes that result from induced mutagenesis. The quantified compounds and the evaluated antioxidant activity boost the health benefits of consuming the improved mutant potatoes. In the present study, the phenolic composition and antioxidant activity of eighteen mutant and initial potato genotypes were analyzed by UPLC-qTOF-MS/MS and the ORAC method, respectively. In each of the hybrid combinations, mutant lines with an improved phenolic compound profile were observed. Representative samples from the third hybrid combination had notable increases in phenolic compound concentrations, as well as the presence of metabolites not found in the parental lines. With one exception, the remaining nine mutants showed significantly higher antioxidant capacities. The results will be used in future potato breeding programs, with participation of the valuable mutant lines containing new phenolic substances not present in the initial genotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA