Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 12(7): 6011-5, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22966699

RESUMEN

We designed and fabricated a bimorph Pb(Zr,Ti)O3 (PZT) cantilever with an integrated Si proof mass to obtain a low resonant frequency for an energy harvesting application. The cantilevers were fabricated on the micro-electromechanical systems (MEMS) scale. A mode of piezoelectric conversions were d31 and d33 mode in cantilever vibration Therefore, we designed and fabricated a single cantilever with d31 unimorph, d31 bimorph, d33 unimorph, and d33 bimorph modes. Finally, we fabricated a device with beam dimensions of about 5,400 microm x 480 microm x 14 microm (< +/- 5%), and an integrated Si proof mass with dimensions of about 1,481 microm x 988 microm x 450 microm (< +/- 5%). In order to measure the d31 and d33 modes, we fabricated top and bottom electrodes. The distance between the top electrodes was 50 microm and the resonant frequency was 89.4 Hz. The average powers of the d31 unimorph, d31 bimorph, d33 unimorph, and d33 bimorph modes were 3.90, 9.60, 21.42, and 22.47 nW at 0.8 g (g = 9.8 m/s2) and optimal resistance, respectively.

2.
J Nanosci Nanotechnol ; 11(7): 6510-3, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22121746

RESUMEN

In this study, a PZT cantilever with a Si proof mass is designed and fabricated for a low frequency energy harvesting application. A mathematical model of a multi-layer composite beam was derived and applied in a parametric analysis of the piezoelectric cantilever. Finally, the dimensions of the cantilever were determined for the resonant frequency of the cantilever. Our cantilever design was based on MATLAB and ANSYS simulations. For this simulation, the proof mass volumes were varied from 0 to 0.5 mm3 and resonant frequencies were calculated from 833.5 Hz to 125.5 Hz, respectively. Based on simulation, we fabricated a device with beam dimensions of about 4.10 mm x 0.48 mm x 0.012 mm, and an integrated Si proof mass with dimensions of about 0.481 mm x 0.48 mm x 0.45 mm. The resonant frequency, maximum peak voltage, and highest average power of the cantilever device were 224.8 Hz, 4.8 mV, and 2.24 nW, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA