Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 69(6): 844-51, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21398133

RESUMEN

Radio pollutant removal is one of several priority restoration strategies for the environment. This study assessed the effect of low molecular weight organic acid on the lability and mechanisms for release of (137)Cs from contaminated soils. The amount of (137)Cs radioactivity released from contaminated soils reacting with 0.02 M low molecular weight organic acids (LMWOAs) specifically acetic, succinic, oxalic, tartaric, and citric acid over 48 h were 265, 370, 760, 850, and 1002 Bq kg(-1), respectively. The kinetic results indicate that (137)Cs exhibits a two-step parabolic diffusion equation and a good linear relationship, indicating that the parabolic diffusion equation describes the data quite well, as shown by low p and high r(2) values. The fast stage, which was found to occur within a short period of time (0.083-3 h), corresponds to the interaction of LMWOAs with the surface of clay minerals; meanwhile, during the slow stage, which occurs over a much longer time period (3-24 h), desorption primarily is attributed to inter-particle or intra-particle diffusion. After a fifth renewal of the LMWOAs, the total levels of (137)Cs radioactivity released by acetic, succinic, oxalic, tartaric, and citric acid were equivalent to 390, 520, 3949, 2061, and 4422 Bq kg(-1) soil, respectively. H(+) can protonate the hydroxyl groups and oxygen atoms at the broken edges or surfaces of the minerals, thereby weakening Fe-O and Al-O bonds. After protonation of H(+), organic ligands can attack the OH and OH(2) groups in the minerals easily, to form complexes with surface structure cations, such as Al and Fe. The amounts of (137)Cs released from contaminated soil treated with LMWOAs were substantially increased, indicating that the LMWOAs excreted by the roots of plants play a critical role in (137)Cs release.


Asunto(s)
Ácidos Carboxílicos/química , Cesio/análisis , Cesio/química , Cloruros/análisis , Cloruros/química , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Suelo/análisis , Adsorción , Difusión , Peso Molecular , Plantas/química , Plantas/metabolismo , Espectrometría gamma/métodos
2.
Colloids Surf B Biointerfaces ; 81(1): 217-23, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20674290

RESUMEN

The role of short-range order (SRO) metal oxides, which are common in acid soils and associated environments, in influencing the abiotic transformations of catechin, which is common in the soil of tea plantations, still remains poorly understood. The aim of this study was to investigate the catalytic power of SRO Mn(IV)-, Fe(III)- and Al-oxides in influencing the abiotic transformations of catechin. At the end of a 90-h reaction period, the release of CO(2) in all the oxide-catechin systems is higher than that for the system with only catechin. Polymerization of catechin is catalyzed and enhanced by SRO-oxides, as is indicated by the absorbance values of the supernatants, which were obtained via visible adsorption spectroscopy, and the yields of humic polymers. The sequence of the oxides that increased the yield of total humic polymers in these systems under ambient atmosphere is: Fe(III)-oxide>Mn(IV)-oxide>Al-oxide>>no catalyst (catechin). The electron spin resonance (ESR) and Fourier transformation infrared absorption spectrometry (FT-IR) of humic polymers formed in the oxide-catechin systems were similar to the spectra obtained from the humic polymers extracted from the soil. The catalytic power of SRO-oxides in promoting the oxidative polymerization of catechin, the resultant formation of humic substances, and C turnover in acid soils thus merit attention.


Asunto(s)
Óxido de Aluminio/química , Catequina/química , Compuestos Férricos/química , Compuestos de Manganeso/química , Óxidos/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Catálisis , Catequina/metabolismo , Cristalización , Espectroscopía de Resonancia por Spin del Electrón , Sustancias Húmicas/análisis , Concentración de Iones de Hidrógeno , Modelos Químicos , Estructura Molecular , Polimerizacion , Suelo/análisis , Microbiología del Suelo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
3.
J Environ Radioact ; 101(6): 472-81, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19038481

RESUMEN

The dynamics of Cs and Sr sorption by soils, especially in the subtropics and tropics, as influenced by soil components are not fully understood. The rates and capacities of Cs and Sr sorption by selected subtropical and tropical soils in Taiwan were investigated to facilitate our understanding of the transformation and dynamics of Cs and Sr in soils developed under highly weathering intensity. The Langmuir isotherms and kinetic rates of Cs and Sr sorption on the Ap1 and Bt1 horizons of the Long-Tan (Lt) and the A and Bt1 horizons of the Kuan-Shan (Kt), Mao-Lin (Tml) and Chi-Lo (Cl) soils were selected for this study. Air-dried soil (<2mm) samples were reacted with of 7.5 x 10(-5) to 1.88 x 10(-3)M of CsCl (pH 4.0) or 1.14 x 10(-4) to 2.85 x 10(-3)M of SrCl(2) (pH 4.0) solutions at 25 degrees C. The sorption maximum capacity (q(m)) of Cs by the Ap1 and Bt1 horizons of the Lt soil (62.24 and 70.70 mmol Cs kg(-1) soil) were significantly (p<0.05) higher than those by the A and Bt1 horizons of the Kt and Cl soils (26.46 and 27.49 mmol Cs kg(-1) soil in Kt soil and 34.83 and 29.96 mmol Cs kg(-1) soil in Cl soil, respectively), however, the sorption maximum capacity values of the Lt and Tml soils did not show significant differences. The amounts of pyrophosphate extractable Fe (Fe(p)) were correlated significantly with the Cs and Sr sorption capacities (for Cs sorption, r(2)=0.97, p<1.0 x 10(-4); for Sr sorption, r(2)=0.82, p<2.0 x 10(-3)). The partition coefficient of radiocesium sorbed on soil showed the following order: Cl soil>>Kt soil>Tml soil>Lt soil. It was due to clay minerals. The second-order kinetic model was applied to the Cs and Sr sorption data. The rate constant of Cs or Sr sorption on the four soils was substantiality increased with increasing temperature. This is attributable to the availability of more energy for bond breaking and bond formation brought about by the higher temperatures. The rate constant of Cs sorption at 308 K was 1.39-2.09 times higher than that at 278K in the four soils. The activation energy of Cs and Sr sorbed by the four soils ranged from 7.2 to 16.7 kJ mol(-1) and from 15.2 to 22.4 kJ mol(-1), respectively. Therefore, the limiting step of the Cs(+) or Sr(2+) sorption on the soils was diffusion-controlled processes. The reactive components, which are significantly correlated with the Langmuir sorption maxima of Cs and Sr by these soils, substantially influenced their kinetic rates of Cs and Sr sorption. The data indicate that among components of the subtropical and tropical soils studied, short-range ordered sesquioxides especially Al- and Fe-oxides complexed with organics play important roles in influencing their capacity and dynamics of Cs and Sr sorption.


Asunto(s)
Radioisótopos de Cesio/análisis , Plantas de Energía Nuclear , Contaminantes Radiactivos del Suelo/análisis , Radioisótopos de Estroncio/análisis , Adsorción , Monitoreo de Radiación
4.
J Environ Radioact ; 99(1): 159-66, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17765366

RESUMEN

(137)Cs is one of the major artificial radionuclides found in environments; but the mechanisms behind fertilizer-induced (137)Cs desorption from soil remain unknown. This study aimed to investigate the kinetics and mechanisms underlying the various cations and anions that cause Cs release from soil under acidic conditions. NH(4)H(2)PO(4) (1M), 0.5M (NH(4))(2)SO(4), 1M NH(4)Cl, 1M KCl or 1M NaCl solutions were added to (137)Cs-contaminated soil. The power function model well described the short term (137)Cs desorption with the solutions. The rate coefficients for (137)Cs release from soil in NH(4)H(2)PO(4), (NH(4))(2)SO(4), NH(4)Cl, and KCl solutions were 7.7, 7.3, 6.8, and 6.1 times higher than the rate observed in a NaCl solution, respectively. The NH(4)H(2)PO(4) and (NH(4))(2)SO(4) solutions induced significantly greater (137)Cs release from the contaminated soil than the NH(4)Cl, KCl and NaCl solutions. After four times repeated extractions with the fertilizer solutions, the total amount of (137)Cs extracted by (NH(4))(2)SO(4) and NH(4)Cl solutions reached equilibrium, while that extracted using an NH(4)H(2)PO(4) solution continued to increase. The combined effect of phosphate and protons was the major mechanism behind (137)Cs release from contaminated soils, when an NH(4)H(2)PO(4) solution was used.


Asunto(s)
Radioisótopos de Cesio/química , Fertilizantes , Contaminantes Radiactivos del Suelo/química , Metales/química
5.
J Agric Food Chem ; 54(1): 212-8, 2006 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-16390201

RESUMEN

Polyphenols (catechins) are vital biomolecules in tea plants (Camellia sinensis), which are well-known as typical Al accumulators. However, the interaction between Al and catechin remains obscured. The objective of the present study was to investigate the effect of Al on the transformation of (+)-catechin. Solutions with OH/Al molar ratios of 2.5 (pH 5.5) and 3.0 (pH 7.0) prepared at Al/catechin molar ratios (R) of 0, 0.2, 0.4, 0.6, 0.8, and 1.0 were aged for 7 and 30 days, respectively. The precipitates were collected and examined by wet chemistry, X-ray diffraction, transmission electron microscopy, electron spin resonance (ESR), cross-polarization magic angle (CPMAS) 13C nuclear magnetic resonance (13C NMR) analyses, and Fourier transformation infrared absorption spectrometry (FT-IR). The weight of the precipitates increased with increasing Al/catechin molar ratios and with prolonged aging. The molar ratios of Al/catechin in the precipitates increased with increasing initial Al/catechin molar ratios and were close to the initial solution Al/catechin molar ratios. The chemical analysis and spectroscopic studies indicated that Al was bonded with catechin, forming a 1:1 type complex. The reaction of crystalline catechin with Al resulted in the formation of X-ray noncrystalline precipitates. The solid-state CPMAS 13C NMR spectra of the precipitates show the change in chemical shifts of catechin as a result of catechin complexation with Al. The FT-IR spectra of the Al-catechin precipitates also show the loss of absorption bands of several functional groups compared with catechin. The FT-IR data substantiate this reasoning. The ESR spectra of the precipitates show a single symmetrical line devoid of any fine splitting, indicating the presence of free radicals of semiquinones, which are commonly present in humified materials.


Asunto(s)
Aluminio/química , Catequina/química , Aluminio/análisis , Catequina/análisis , Precipitación Química , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Nefelometría y Turbidimetría , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
6.
Environ Sci Technol ; 40(24): 7784-9, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17256528

RESUMEN

The objective of this study was to provide fundamental knowledge of arsenate sorption on lithium/aluminum layered double hydroxide intercalated by chloride (Li/Al LDH-Cl) and further to reveal the contribution of exposed positive charge surface of Li/Al LDH-CI created by intercalating LiCl into Al(OH)3 layers to arsenate sorption. Therefore, sorption isotherms, envelopes and extended X-ray absorption fine structure (EXAFS) technique were employed to examine the reaction of arsenate on Li/Al LDH-Cl and on gibbsite. Based on an isotherm study, the sorption maximum of Li/Al LDH-Cl for arsenate was approximately six times higher than that of gibbsite. Sorption envelopes of arsenate on Li/Al LDH-Cl displayed a pH-sensitive behavior from pH 4.0 to 7.0, but it was insensitive to pH above pH 7.0, approaching to the pHpzc of Li/Al LDH-Cl (7.22). This transformation with shifted pHs illustrated that there were two types of reaction sites within Li/Al LDH-Cl that participate in arsenate sorption; one is pH-sensitive and the other is not. From EXAFS analysis, arsenate sorbed on Li/Al LDH, reacted not only with Al in the edges of Al-(OH)3 layers, but also with Li located in the vacant octahedral sites within Al(OH)3 layers; however, the decreasing intensity of As(V)-Al shells with increasing pH represented there were fewer As(V)-Al complex existed at higher pH, i.e., the complex between arsenate and Al is pH-sensitive. The superior sorption capability of Li/Al LDH-Cl to that of gibbsite could be attributed to the intercalated Li cations which served as the permanent sorption sites and made the surface of Al(OH)3 have high affinity to arsenate.


Asunto(s)
Hidróxido de Aluminio/química , Aluminio/química , Arseniatos/química , Cloruros/química , Litio/química , Análisis Espectral/métodos , Termodinámica
7.
Water Res ; 39(15): 3457-66, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16112170

RESUMEN

The mechanisms of the influence of organics on Al transformation were not fully understood. This study investigated the effect of citric acid on Al speciation in partially neutralized aluminum solution. The partially neutralized solution was prepared with 20 mmol L(-1) AlCl3 without citrate (citrate/Al molar ratio of 0, control) or with citrate (citrate to Al molar ratios between 0.1 and 3.0) at pH between 3.0 and 7.0. The nature of aluminum hydrolytic products as influenced by citrate complexation was investigated by turbidity measurement, ferron kinetic color development, peak line width in 27Al nuclear magnetic resonance (NMR) deconvolution demodule quantitative methods, and the MinteqA2 chemical speciation program. Sulfate precipitates from Al solution as influenced by citrate were examined by X-ray diffraction (XRD) analysis and atomic force microscopy (AFM). The turbidity of the Al solution increased with increasing pH values. Increases in citrate/Al molar ratio from 0 to 0.1 decreased dramatically the turbidity due to citrate complexation. The 27Al NMR peak at 6 ppm of the Al solution at a citrate/Al molar ratio of 0.5 shifted to 8 and 10 ppm in the solutions at citrate/Al molar ratio of 1.0 and 3.0, respectively. Comparison of 27Al NMR data and the data obtained from the MinteqA2 chemical speciation program, indicate that the Al-citrate complexes as revealed by 27Al NMR data are largely Al(citrate), AlH(citrate)+, and Al(citrate)(2)3- complexes (99-112%) in the pH range of 4.5-6.5. The non-detected Al fractions by the MinteqA2 program account for 82-99% of the non-detected Al fractions by NMR quantitation in the same pH range. The AFM of sulfate precipitates from solutions with low citrate/Al molar ratios (i.e., 0.01, pH 4.5, aged 40 days) shows that Al13 sulfate precipitates were ellipse-shaped. These ellipse-shaped precipitates were aggregated when solution pH increased from 4.5 to 7.0 (aged 40 days), indicating the fast hydrolytic rate of Al at high pH. The sulfate precipitates from solution with a high citrate/Al molar ratio (i.e., 0.05, pH 4.5, aged 40 days) also shows aggregate of particles, and XRD non-crystallized precipitates the hampering effect of citrate on Al precipitates.


Asunto(s)
Aluminio/química , Ácido Cítrico/química , Sulfatos/química , Precipitación Química , Concentración de Iones de Hidrógeno , Hidrólisis , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA