Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1297197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146542

RESUMEN

Introduction: Hypothalamic glucose-sensitive neural circuits, which regulate energy metabolism and can contribute to diseases such as obesity and type 2 diabetes, have been difficult to study in humans. We developed an approach to assess hypothalamic functional connectivity changes during glucose loading using functional magnetic resonance imaging (fMRI). Methods: To do so, we conducted oral glucose tolerance tests while acquiring functional images before, and 10 and 45 min after glucose ingestion in a healthy male and cross-sectionally in 20 healthy participants on two different diets. Results: At group level, 39 fMRI sessions were not sufficient to detect glucose-mediated connectivity changes. However, 10 repeated sessions in a single subject revealed significant intrinsic functional connectivity increases 45 min after glucose intake in the arcuate, paraventricular, and dorsomedial nuclei, as well as in the posterior hypothalamic area, median eminence, and mammillary bodies. Discussion: Our methodology allowed to outline glucose-sensitive hypothalamic pathways in a single human being and holds promise in delineating individual pathophysiology mechanisms in patients with dysglycemia.

2.
PLoS One ; 18(6): e0287578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37347763

RESUMEN

PURPOSE: Recently, cerebral autoregulation indices based on moving correlation indices between mean arterial pressure (MAP) and cerebral oximetry (NIRS, ORx) or transcranial Doppler (TCD)-derived middle cerebral artery flow velocity (Mx) have been introduced to clinical practice. In a pilot study, we aimed to evaluate the validity of these indices using incremental lower body negative pressure (LBNP) until presyncope representing beginning cerebral hypoperfusion as well as lower body positive pressure (LBPP) with added mild hypoxia to induce cerebral hyperperfusion in healthy subjects. METHODS: Five male subjects received continuous hemodynamic, TCD and NIRS monitoring. Decreasing levels of LBNP were applied in 5-minute steps until subjects reached presyncope. Increasing levels of LBPP were applied stepwise up to 20 or 25 mmHg. Normobaric hypoxia was added until an oxygen saturation of 84% was reached. This was continued for 10 minutes. ORx and Mx indices were calculated using previously described methods. RESULTS: Both Indices showed an increase > 0.3 indicating impaired cerebral autoregulation during presyncope. However, there was no significant difference in Mx at presyncope compared to baseline (p = 0.168). Mean arterial pressure and cardiac output decreased only in presyncope, while stroke volume was decreased at the last pressure level. Neither Mx nor ORx showed significant changes during LBPP or hypoxia. Agreement between Mx and ORx was poor during the LBNP and LBPP experiments (R2 = 0.001, p = 0.3339). CONCLUSION: Mx and ORx represent impaired cerebral autoregulation, but in Mx this may not be distinguished sufficiently from baseline. LBPP and hypoxia are insufficient to reach the upper limit of cerebral autoregulation as indicated by Mx and ORx.


Asunto(s)
Presión Arterial , Espectroscopía Infrarroja Corta , Humanos , Masculino , Presión Arterial/fisiología , Proyectos Piloto , Espectroscopía Infrarroja Corta/métodos , Ultrasonografía Doppler Transcraneal/métodos , Circulación Cerebrovascular/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Oximetría , Homeostasis/fisiología , Presión Sanguínea/fisiología
3.
J Am Heart Assoc ; 11(21): e026437, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36300662

RESUMEN

Background Discerning the mechanisms driving orthostatic symptoms in human beings remains challenging. Therefore, we developed a novel approach combining cardiac and cerebral real-time magnetic resonance imaging, beat-to-beat physiological monitoring, and orthostatic stress testing through lower-body negative pressure (LBNP). We conducted a proof-of-concept study in a patient with severe orthostatic hypotension. Methods and Results We included a 46-year-old man with pure autonomic failure. Without and during -30 mmHg LBNP, we obtained 3T real-time magnetic resonance imaging of the cardiac short axis and quantitative flow measurements in the pulmonary trunk and middle cerebral artery. Blood pressure was 118/74 mmHg during supine rest and 58/35 mmHg with LBNP. With LBNP, left ventricular stroke volume decreased by 44.6%, absolute middle cerebral artery flow by 37.6%, and pulmonary trunk flow by 40%. Conclusions Combination of real-time magnetic resonance imaging, LBNP, and continuous blood pressure monitoring provides a promising new approach to study orthostatic intolerance mechanisms in human beings.


Asunto(s)
Intolerancia Ortostática , Masculino , Humanos , Persona de Mediana Edad , Presión Negativa de la Región Corporal Inferior , Presión Sanguínea/fisiología , Volumen Sistólico , Imagen por Resonancia Magnética
5.
Clin Auton Res ; 30(6): 531-540, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31974825

RESUMEN

INTRODUCTION: Baroreflexes and peripheral chemoreflexes control efferent autonomic activity making these reflexes treatment targets for arterial hypertension. The literature on their interaction is controversial, with suggestions that their individual and collective influence on blood pressure and heart rate regulation is variable. Therefore, we applied a study design that allows the elucidation of individual baroreflex-chemoreflex interactions. METHODS: We studied nine healthy young men who breathed either normal air (normoxia) or an air-nitrogen-carbon dioxide mixture with decreased oxygen content (hypoxia) for 90 min, with randomization to condition, followed by a 30-min recovery period and then exposure to the other condition for 90 min. Multiple intravenous phenylephrine bolus doses were applied per condition to determine phenylephrine pressor sensitivity as an estimate of baroreflex blood pressure buffering and cardiovagal baroreflex sensitivity (BRS). RESULTS: Hypoxia reduced arterial oxygen saturation from 98.1 ± 0.4 to 81.0 ± 0.4% (p < 0.001), raised heart rate from 62.9 ± 2.1 to 76.0 ± 3.6 bpm (p < 0.001), but did not change systolic blood pressure (p = 0.182). Of the nine subjects, six had significantly lower BRS in hypoxia (p < 0.05), two showed a significantly decreased pressor response, and three showed a significantly increased pressor response to phenylephrine in hypoxia, likely through reduced baroreflex buffering (p < 0.05). On average, hypoxia decreased BRS by 6.4 ± 0.9 ms/mmHg (19.9 ± 2.0 vs. 14.12 ± 1.6 ms/mmHg; p < 0.001) but did not change the phenylephrine pressor response (p = 0.878). CONCLUSION: We applied an approach to assess individual baroreflex-chemoreflex interactions in human subjects. A subgroup exhibited significant impairments in baroreflex blood pressure buffering and BRS with peripheral chemoreflex activation. The methodology may have utility in elucidating individual pathophysiology and in targeting treatments modulating baroreflex or chemoreflex function.


Asunto(s)
Barorreflejo , Hipertensión , Presión Sanguínea , Frecuencia Cardíaca , Humanos , Hipoxia , Masculino
6.
Front Neurosci ; 13: 193, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30890917

RESUMEN

Introduction: Brainstem nuclei govern the arterial baroreflex, which is crucial for heart rate and blood pressure control. Yet, brainstem function is difficult to explore in living humans and is therefore mostly studied using animal models or postmortem human anatomy studies. We developed a methodology to identify brainstem nuclei involved in baroreflex cardiovascular control in humans by combining pharmacological baroreflex testing with functional magnetic resonance imaging. Materials and Methods: In 11 healthy men, we applied eight repeated intravenous phenylephrine bolus doses of 25 and 75 µg followed by a saline flush using a remote-controlled injector during multiband functional magnetic resonance imaging (fMRI) acquisition of the whole brain including the brainstem. Continuous finger arterial blood pressure, respiration, and electrocardiogram (ECG) were monitored. fMRI data were preprocessed with a brainstem-specific pipeline and analyzed with a general linear model (GLM) to identify brainstem nuclei involved in central integration of the baroreceptor input. Results: Phenylephrine elicited a pressor response followed by a baroreflex-mediated lengthening of the RR interval (25 µg: 197 ± 15 ms; 75 µg: 221 ± 33 ms). By combining fMRI responses during both phenylephrine doses, we identified significant signal changes in the nucleus tractus solitarii (t = 5.97), caudal ventrolateral medulla (t = 4.59), rostral ventrolateral medulla (t = 7.11), nucleus ambiguus (t = 5.6), nucleus raphe obscurus (t = 6.45), and several other brainstem nuclei [p < 0.0005 family-wise error (few)-corr.]. Conclusion: Pharmacological baroreflex testing during fMRI allows characterizing central baroreflex regulation at the level of the brainstem in humans. Baroreflex-mediated activation and deactivation patterns are consistent with previous investigations in animal models. The methodology has the potential to elucidate human physiology and mechanisms of autonomic cardiovascular disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA