Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(33): 39570-39577, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37561408

RESUMEN

Aiming to develop a self-powered bioelectric tag for fish behavioral studies, here we present a fish-wearable piezoelectric nanogenerator (FWPNG) that can simultaneously harvest the strain energy and the flow impact energy caused by fish-tailing. The FWPNG is fabricated by transferring a 2 µm-thick Nb0.02-Pb(Zr0.6Ti0.4)O3 (PZT) layer from a silicon substrate to a spin-coated polyimide film via a novel zinc oxide (ZnO) release process. The open-circuit voltage of the strain energy harvester reaches 2.3 V under a strain of 1% at an ultra-low frequency of 1 Hz, and output voltage of the impact energy harvester reaches a 0.3 V under a pressure of 82.6 kPa at 1 Hz, which is in good agreement with our theoretical analysis. As a proof-of-concept demonstration, an event-driven underwater acoustic transmitter is developed by utilizing the FWPNG as a trigger switch. Acoustic transmission occurs when the amplitude of fish-tailing is larger than a preset threshold. The dual-modal FWPNG device shows the potential application in self-powered biotags for animal behavioral studies and ocean explorations.

2.
Microsyst Nanoeng ; 9: 31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969964

RESUMEN

Polyimides are widely used in the MEMS and flexible electronics fields due to their combined physicochemical properties, including high thermal stability, mechanical strength, and chemical resistance values. In the past decade, rapid progress has been made in the microfabrication of polyimides. However, enabling technologies, such as laser-induced graphene on polyimide, photosensitive polyimide micropatterning, and 3D polyimide microstructure assembly, have not been reviewed from the perspective of polyimide microfabrication. The aims of this review are to systematically discuss polyimide microfabrication techniques, which cover film formation, material conversion, micropatterning, 3D microfabrication, and their applications. With an emphasis on polyimide-based flexible MEMS devices, we discuss the remaining technological challenges in polyimide fabrication and possible technological innovations in this field.

3.
ACS Appl Mater Interfaces ; 12(52): 58317-58325, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33320517

RESUMEN

Carbon-based piezoresistive nanomaterials are widely used for the fabrication of flexible sensors. Although our previous work demonstrated that an electrical breakdown (EBD) process can endow a graphene/polyimide (G/PI) composite with piezoresistivity, the formation of EBD-induced electrical traces with high consistency in bulk nanocomposites remains a technical challenge. With the aim of developing highly sensitive flexible strain sensors using a batch fabrication process, we introduce herein a microscale EBD (µEBD) method to form localized piezoresistors with diverse shapes in a G/PI thin film. The results of scanning electron microscopy, Raman spectroscopy, and electromechanical tests indicate that high piezoresistivity is derived from the high porosity of the carbonized conductive traces generated by the µEBD process. The gauge factor of the µEBD-treated G/PI strain sensor is over 20 times greater than that of the as-prepared G/PI film, and the sensitivities of the strain sensors can be tuned by varying the applied current in the µEBD process. We also demonstrate the potential applications of µEBD-treated G/PI strain sensors in the fields of finger gesture detection, sound pressure measurement, and airflow sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA