Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 566(7742): 131-135, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30675061

RESUMEN

Cells use compartmentalization of enzymes as a strategy to regulate metabolic pathways and increase their efficiency1. The α- and ß-carboxysomes of cyanobacteria contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-a complex of eight large (RbcL) and eight small (RbcS) subunits-and carbonic anhydrase2-4. As HCO3- can diffuse through the proteinaceous carboxysome shell but CO2 cannot5, carbonic anhydrase generates high concentrations of CO2 for carbon fixation by Rubisco6. The shell also prevents access to reducing agents, generating an oxidizing environment7-9. The formation of ß-carboxysomes involves the aggregation of Rubisco by the protein CcmM10, which exists in two forms: full-length CcmM (M58 in Synechococcus elongatus PCC7942), which contains a carbonic anhydrase-like domain8 followed by three Rubisco small subunit-like (SSUL) modules connected by flexible linkers; and M35, which lacks the carbonic anhydrase-like domain11. It has long been speculated that the SSUL modules interact with Rubisco by replacing RbcS2-4. Here we have reconstituted the Rubisco-CcmM complex and solved its structure. Contrary to expectation, the SSUL modules do not replace RbcS, but bind close to the equatorial region of Rubisco between RbcL dimers, linking Rubisco molecules and inducing phase separation into a liquid-like matrix. Disulfide bond formation in SSUL increases the network flexibility and is required for carboxysome function in vivo. Notably, the formation of the liquid-like condensate of Rubisco is mediated by dynamic interactions with the SSUL domains, rather than by low-complexity sequences, which typically mediate liquid-liquid phase separation in eukaryotes12,13. Indeed, within the pyrenoids of eukaryotic algae, the functional homologues of carboxysomes, Rubisco adopts a liquid-like state by interacting with the intrinsically disordered protein EPYC114. Understanding carboxysome biogenesis will be important for efforts to engineer CO2-concentrating mechanisms in plants15-19.


Asunto(s)
Proteínas Bacterianas/metabolismo , Orgánulos/metabolismo , Multimerización de Proteína , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Synechococcus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/ultraestructura , Microscopía por Crioelectrón , Disulfuros/metabolismo , Modelos Moleculares , Oxidación-Reducción , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribulosa-Bifosfato Carboxilasa/ultraestructura
2.
Science ; 358(6368): 1272-1278, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29217567

RESUMEN

Plant RuBisCo, a complex of eight large and eight small subunits, catalyzes the fixation of CO2 in photosynthesis. The low catalytic efficiency of RuBisCo provides strong motivation to reengineer the enzyme with the goal of increasing crop yields. However, genetic manipulation has been hampered by the failure to express plant RuBisCo in a bacterial host. We achieved the functional expression of Arabidopsis thaliana RuBisCo in Escherichia coli by coexpressing multiple chloroplast chaperones. These include the chaperonins Cpn60/Cpn20, RuBisCo accumulation factors 1 and 2, RbcX, and bundle-sheath defective-2 (BSD2). Our structural and functional analysis revealed the role of BSD2 in stabilizing an end-state assembly intermediate of eight RuBisCo large subunits until the small subunits become available. The ability to produce plant RuBisCo recombinantly will facilitate efforts to improve the enzyme through mutagenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Escherichia coli/enzimología , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cloroplastos/metabolismo , Cristalografía por Rayos X , Chaperoninas del Grupo I/química , Chaperoninas del Grupo I/genética , Chaperoninas del Grupo I/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagénesis , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética
3.
Cell ; 107(2): 223-33, 2001 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-11672529

RESUMEN

The GroEL/GroES chaperonin system mediates the folding of a range of newly synthesized polypeptides in the bacterial cytosol. Using a rapid biotin-streptavidin-based inhibition of chaperonin function, we show that the cage formed by GroEL and its cofactor GroES can have a dual role in promoting folding. First, enclosure of nonnative protein in the GroEL:GroES complex is essential for folding to proceed unimpaired by aggregation. Second, folding inside the cage can be significantly faster than folding in free solution, independently of ATP-driven cycles of GroES binding and release. This suggests that confinement of unfolded protein in the narrow hydrophilic space of the chaperonin cage smoothes the energy landscape for the folding of some proteins, increasing the flux of folding intermediates toward the native state.


Asunto(s)
Chaperonina 60/química , Chaperoninas/química , Animales , Biotinilación , Bovinos , Chaperonina 10/química , Cromatografía en Gel , Citosol/metabolismo , Cinética , Microscopía Electrónica , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Ribulosa-Bifosfato Carboxilasa/química , Estreptavidina/metabolismo , Resonancia por Plasmón de Superficie , Tiosulfato Azufretransferasa/química , Factores de Tiempo
4.
Nitric Oxide ; 5(4): 289-95, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11485367

RESUMEN

As a consequence of bacterial infection and the ensuing inflammation, expression of the inducible NO synthase results in prolonged synthesis of NO in high concentrations, which among other functions, contributes to the innate defense against the infectious agent. Here we show that NO inhibits the ability of the bacterial cochaperone DnaJ containing a RING finger-like domain to cooperate with the Hsp70 chaperone DnaK in mediating correct folding of denatured rhodanese. This inhibition is accompanied by S-nitrosation of DnaJ as well as by Zn2+ release from the protein. In contrast, NO has no effect on the activity of GroEL, a bacterial chaperone without zinc sulfur clusters. Escherichia coli cells lacking the chaperone trigger factor and thus relying on the DnaJ/DnaK system are more susceptible toward NO-mediated cytostasis than are wild-type bacteria. Our studies identify the cochaperone DnaJ as a molecular target for NO. Thus, an encounter of bacterial cells with NO can impair the protein folding activity of the bacterial chaperone system, thereby increasing bacterial susceptibility toward the defensive attack by the host.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/antagonistas & inhibidores , Chaperonas Moleculares/antagonistas & inhibidores , Óxido Nítrico/farmacología , Nitrosación/efectos de los fármacos , División Celular/efectos de los fármacos , Chaperonina 60/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Proteínas del Choque Térmico HSP40 , Chaperonas Moleculares/metabolismo , Óxido Nítrico/biosíntesis , Pliegue de Proteína , Eliminación de Secuencia/genética , Zinc/metabolismo , Dedos de Zinc/fisiología
5.
Hum Mol Genet ; 10(12): 1307-15, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11406612

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder with no effective treatment. Geldanamycin is a benzoquinone ansamycin that binds to the heat shock protein Hsp90 and activates a heat shock response in mammalian cells. In this study, we show by using a filter retardation assay and immunofluorescence microscopy that treatment of mammalian cells with geldanamycin at nanomolar concentrations induces the expression of Hsp40, Hsp70 and Hsp90 and inhibits HD exon 1 protein aggregation in a dose-dependent manner. Similar results were obtained by overexpression of Hsp70 and Hsp40 in a separate cell culture model of HD. This is the first demonstration that huntingtin protein aggregation in cells can be suppressed by chemical compounds activating a specific heat shock response. These findings may provide the basis for the development of a novel pharmacotherapy for HD and related glutamine repeat disorders.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Enfermedad de Huntington/metabolismo , Quinonas/farmacología , Secuencia de Aminoácidos , Animales , Benzoquinonas , Células COS , Exones , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteína Huntingtina , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Enfermedad de Huntington/inmunología , Lactamas Macrocíclicas , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptidos/metabolismo
6.
Proc Natl Acad Sci U S A ; 97(14): 7841-6, 2000 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-10859365

RESUMEN

The deposition of protein aggregates in neurons is a hallmark of neurodegenerative diseases caused by polyglutamine (polyQ) proteins. We analyzed the effects of the heat shock protein (Hsp) 70 chaperone system on the aggregation of fragments of huntingtin (htt) with expanded polyQ tracts. In vitro, Hsp70 and its cochaperone Hsp40 suppressed the assembly of htt into detergent-insoluble amyloid-like fibrils in an ATP-dependent manner and caused the formation of amorphous, detergent-soluble aggregates. The chaperones were most active in preventing fibrillization when added during the lag phase of the polymerization reaction. Similarly, coexpression of Hsp70 or Hsp40 with htt in yeast inhibited the formation of large, detergent-insoluble polyQ aggregates, resulting in the accumulation of detergent-soluble inclusions. Thus, the recently established potency of Hsp70 and Hsp40 to repress polyQ-induced neurodegeneration may be based on the ability of these chaperones to shield toxic forms of polyQ proteins and to direct them into nontoxic aggregates.


Asunto(s)
Amiloide/metabolismo , Chaperoninas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Amiloide/ultraestructura , Chaperonina 60/metabolismo , Exones , Proteínas del Choque Térmico HSP40 , Proteínas de Choque Térmico/metabolismo , Humanos , Proteína Huntingtina , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/ultraestructura , Péptidos/genética , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Expansión de Repetición de Trinucleótido
10.
Biol Chem ; 380(5): 531-40, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10384959

RESUMEN

The cylindrical chaperonin GroEL of E. coli and its ring-shaped cofactor GroES cooperate in mediating the ATP-dependent folding of a wide range of polypeptides in vivo and in vitro. By binding to the ends of the GroEL cylinder, GroES displaces GroEL-bound polypeptide into an enclosed folding cage, thereby preventing protein aggregation during folding. The dynamic interaction of GroEL and GroES is regulated by the GroEL ATPase and involves the formation of asymmetrical GroEL:GroES1 and symmetrical GroEL: GroES2 complexes. The proposed role of the symmetrical complex as a catalytic intermediate of the chaperonin mechanism has been controversial. It has also been suggested that the formation of GroEL:GroES2 complexes allows the folding of two polypeptide molecules per GroEL reaction cycle, one in each ring of GroEL. By making use of a procedure to stabilize chaperonin complexes by rapid crosslinking for subsequent analysis by native PAGE, we have quantified the occurrence of GroEL:GroES1 and GroEL:GroES2 complexes in active refolding reactions under a variety of conditions using mitochondrial malate dehydrogenase (mMDH) as a substrate. Our results show that the symmetrical complexes are neither required for chaperonin function nor does their presence significantly increase the rate of mMDH refolding. In contrast, chaperonin-assisted folding is strictly dependent on the formation of asymmetrical GroEL:GroES1 complexes. These findings support the view that GroEL:GroES2 complexes have no essential role in the chaperonin mechanism.


Asunto(s)
Chaperonina 60/química , Malato Deshidrogenasa/química , Pliegue de Proteína , Adenosina Trifosfato/química , Catálisis , Chaperonina 10/química , Electroforesis en Gel de Poliacrilamida , Cinética , Mitocondrias/enzimología , Desnaturalización Proteica
11.
Nat Struct Biol ; 5(11): 977-85, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9808043

RESUMEN

Two models are being considered for the mechanism of chaperonin-assisted protein folding in E. coli: (i) GroEL/GroES act primarily by enclosing substrate polypeptide in a folding cage in which aggregation is prevented during folding. (ii) GroEL mediates the repetitive unfolding of misfolded polypeptides, returning them onto a productive folding track. Both models are not mutually exclusive, but studies with the polypeptide-binding domain of GroEL have suggested that unfolding is the primary mechanism, enclosure being unnecessary. Here we investigate the capacity of the isolated apical polypeptide-binding domain to functionally replace the complete GroEL/GroES system. We show that the apical domain binds aggregation-sensitive polypeptides but cannot significantly assist their refolding in vitro and fails to replace the groEL gene or to complement defects of groEL mutants in vivo. A single-ring version of GroEL cannot substitute for GroEL. These results strongly support the view that sequestration of aggregation-prone intermediates in a folding cage is an important element of the chaperonin mechanism.


Asunto(s)
Chaperonina 10/química , Chaperonina 60/química , Pliegue de Proteína , Animales , Bovinos , Chaperonina 10/fisiología , Chaperonina 60/genética , Chaperonina 60/fisiología , Dicroismo Circular , Citrato (si)-Sintasa/química , Escherichia coli/química , Prueba de Complementación Genética , Malato Deshidrogenasa/química , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes de Fusión , Eliminación de Secuencia , Tetrahidrofolato Deshidrogenasa/química , Tiosulfato Azufretransferasa/química
12.
Science ; 276(5311): 431-5, 1997 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-9103205

RESUMEN

The crystal structure of the adenine nucleotide exchange factor GrpE in complex with the adenosine triphosphatase (ATPase) domain of Escherichia coli DnaK [heat shock protein 70 (Hsp70)] was determined at 2.8 angstrom resolution. A dimer of GrpE binds asymmetrically to a single molecule of DnaK. The structure of the nucleotide-free ATPase domain in complex with GrpE resembles closely that of the nucleotide-bound mammalian Hsp70 homolog, except for an outward rotation of one of the subdomains of the protein. This conformational change is not consistent with tight nucleotide binding. Two long alpha helices extend away from the GrpE dimer and suggest a role for GrpE in peptide release from DnaK.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Conformación Proteica , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
13.
EMBO J ; 15(22): 6111-21, 1996 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-8947033

RESUMEN

As a basic principle, assisted protein folding by GroEL has been proposed to involve the disruption of misfolded protein structures through ATP hydrolysis and interaction with the cofactor GroES. Here, we describe chaperonin subreactions that prompt a re-examination of this view. We find that GroEL-bound substrate polypeptide can induce GroES cycling on and off GroEL in the presence of ADP. This mechanism promotes efficient folding of the model protein rhodanese, although at a slower rate than in the presence of ATP. Folding occurs when GroES displaces the bound protein into the sequestered volume of the GroEL cavity. Resulting native protein leaves GroEL upon GroES release. A single-ring variant of GroEL is also fully functional in supporting this reaction cycle. We conclude that neither the energy of ATP hydrolysis nor the allosteric coupling of the two GroEL rings is directly required for GroEL/GroES-mediated protein folding. The minimal mechanism of the reaction is the binding and release of GroES to a polypeptide-containing ring of GroEL, thereby closing and opening the GroEL folding cage. The role of ATP hydrolysis is mainly to induce conformational changes in GroEL that result in GroES cycling at a physiologically relevant rate.


Asunto(s)
Chaperonina 10/metabolismo , Chaperonina 60/farmacología , Chaperoninas/metabolismo , Pliegue de Proteína , Tiosulfato Azufretransferasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/metabolismo , Animales , Bovinos , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Endopeptidasa K/metabolismo , Activación Enzimática/efectos de los fármacos , Escherichia coli/enzimología , Modelos Biológicos , Conformación Proteica
14.
Science ; 269(5225): 832-6, 1995 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-7638600

RESUMEN

The Escherichia coli chaperonin GroEL and its regulator GroES are thought to mediate adenosine triphosphate-dependent protein folding as an asymmetrical complex, with substrate protein bound within the GroEL cylinder. In contrast, a symmetrical complex formed between one GroEL and two GroES oligomers, with substrate protein binding to the outer surface of GroEL, was recently proposed to be the functional chaperonin unit. Electron microscopic and biochemical analyses have now shown that unphysiologically high magnesium concentrations and increased pH are required to assemble symmetrical complexes, the formation of which precludes the association of unfolded polypeptide. Thus, the functional significance of GroEL:(GroES)2 particles remains to be demonstrated.


Asunto(s)
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Adenosina Trifosfato/farmacología , Adenilil Imidodifosfato/farmacología , Chaperonina 10/química , Chaperonina 10/ultraestructura , Chaperonina 60/química , Chaperonina 60/ultraestructura , Concentración de Iones de Hidrógeno , Magnesio/farmacología , Microscopía Electrónica de Transmisión de Rastreo , Pliegue de Proteína
15.
Science ; 269(5225): 836-41, 1995 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-7638601

RESUMEN

The chaperonins GroEL and GroES of Escherichia coli facilitate protein folding in an adenosine triphosphate (ATP)-dependent reaction cycle. The kinetic parameters for the formation and dissociation of GroEL-GroES complexes were analyzed by surface plasmon resonance. Association of GroES and subsequent ATP hydrolysis in the interacting GroEL toroid resulted in the formation of a stable GroEL:ADP:GroES complex. The complex dissociated as a result of ATP hydrolysis in the opposite GroEL toroid, without formation of a symmetrical GroEL:(GroES)2 intermediate. Dissociation was accelerated by the addition of unfolded polypeptide. Thus, the functional chaperonin unit is an asymmetrical GroEL:GroES complex, and substrate protein plays an active role in modulating the chaperonin reaction cycle.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Pliegue de Proteína , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Chaperonina 10/química , Chaperonina 60/química , Endopeptidasa K , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Magnesio/farmacología , Serina Endopeptidasas/metabolismo
17.
EMBO J ; 13(13): 3192-202, 1994 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-7913682

RESUMEN

The chaperonin GroEL binds unfolded polypeptides, preventing aggregation, and then mediates their folding in an ATP-dependent process. To understand the structural features in non-native polypeptides recognized by GroEL, we have used alpha-lactalbumin (alpha LA) as a model substrate. alpha LA (14.2 kDa) is stabilized by four disulfide bonds and a bound Ca2+ ion, offering the possibility of trapping partially folded disulfide intermediates between the native and the fully unfolded state. The conformers of alpha LA with high affinity for GroEL are compact, containing up to three disulfide bonds, and have significant secondary structure, but lack stable tertiary structure and expose hydrophobic surfaces. Complex formation requires almost the complete alpha LA sequence and is strongly dependent on salts that stabilize hydrophobic interactions. Unfolding of alpha LA to an extended state as well as the burial of hydrophobic surface upon formation of ordered tertiary structure prevent the binding to GroEL. Interestingly, GroEL interacts only with a specific subset of the many partially folded disulfide intermediates of alpha LA and thus may influence in vitro the kinetics of the folding pathways that lead to disulfide bonds with native combinations. We conclude that the chaperonin interacts with the hydrophobic surfaces exposed by proteins in a flexible compact intermediate or molten globule state.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Lactalbúmina/metabolismo , Pliegue de Proteína , Animales , Proteínas Bacterianas/química , Bovinos , Chaperonina 60 , Disulfuros/metabolismo , Proteínas de Choque Térmico/química , Yodoacetamida/farmacología , Lactalbúmina/química , Modelos Moleculares , Fragmentos de Péptidos/metabolismo , Unión Proteica/efectos de los fármacos , Conformación Proteica , Sales (Química)/farmacología
18.
Biochemistry ; 32(37): 9709-13, 1993 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-7690591

RESUMEN

The interaction of two complementary fragments of myelin basic protein from bovine spinal cord with bilayers of dimyristoylphosphatidylglycerol has been studied by broad line 2H and 31P NMR. The fragments, produced by cleavage at the single tryptophan, consist of an N-terminal portion of molecular mass 12.6 kDa and a C-terminal portion of molecular mass 5.8 kDa. The phosphatidylglycerol lipid was deuterated at all three segments of the glycerol headgroup. The approximately linear dependence of the 2H quadrupole splittings and 31P chemical shift anisotropy on protein/lipid ratio in the complexes indicates that the lipids interacting with the protein fragments were in fast exchange on the NMR time scale (approximately 10(-4)-10(-5) s). The relative gradients of the dependence on protein/lipid ratio of both these parameters decrease with the size of the protein fragment and correlate reasonably well with both the net charge on the protein and the lipid binding stoichiometries in the absence of salt. The results are therefore consistent with a model in which the perturbation of the quadrupole splittings either is determined by the net surface potential or is constant for the different protein fragments. Either possibility is consistent with the reduced activity of the fragments relative to the whole protein.


Asunto(s)
Proteína Básica de Mielina/química , Fosfatidilgliceroles/química , Animales , Bovinos , Técnicas In Vitro , Iones , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética , Fragmentos de Péptidos/química , Unión Proteica , Médula Espinal/química
20.
Eur J Biochem ; 209(1): 423-30, 1992 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-1327777

RESUMEN

Protein/phospholipid interactions in the solubilized mitochondrial ubihydroquinone:cytochrome-c oxidoreductase (bc1 complex) were studied by spin-label electron-spin resonance and by 31P-NMR spectroscopy. Spin-labelled phospholipids were employed to probe the relative binding affinities of a number of phospholipids with regard to the significance of phospholipids for the activity and stability of this multisubunit complex. The protein was titrated with spin-labelled cardiolipin (1,3-bisphosphatidyl-sn-glycerol) and with the spin-labelled analogues of PtdCho and PtdEtn, both of which have been shown recently to elicit a substantial increase in electron-transport activity [Schägger, H., Hagen, T., Roth, B., Brandt, U., Link, T. A. & von Jagow, G. (1990) Eur. J. Biochem. 190, 123-130]. A simplified distribution model showed that neutral phospholipids have much lower protein affinity than cardiolipin. In contrast to the transient weak lipid binding detected by spin-label electron-spin resonance, 31P NMR revealed a tightly bound cardiolipin portion, even after careful delipidation of the complex. Considerable line narrowing was observed after phospholipase A2 digestion of the bound cardiolipin, whereas addition of SDS resulted in complete release. Relative proportions and line widths of mobile and immobilized lipids were obtained by deconvoluting the partially overlapping signals. The current results are discussed with reference to similar findings with other mitochondrial membrane proteins. It is assumed that activation by neutral phospholipids reflects a generalized effect on the protein conformation. Cardiolipin binding is believed to be important for the structural integrity of the mitochondrial protein complexes.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Mitocondrias Cardíacas/enzimología , NADH Deshidrogenasa/metabolismo , Fosfolípidos/metabolismo , Animales , Sitios de Unión , Unión Competitiva , Cardiolipinas/metabolismo , Bovinos , Micelas , Octoxinol , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipasas A/metabolismo , Fosfolipasas A2 , Polietilenglicoles , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA