Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 216: 111352, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33461020

RESUMEN

A whole-cell biohybrid catalyst where a (pentamethylcyclopentadienyl)rhodium(III) (Cp*Rh(III)) complex was covalently incorporated into the cavity of nitrobindin (NB), a ß-barrel protein, was prepared on an E. coli cell surface to produce isoquinolines via C(sp2)-H bond activation. In this whole-cell biohybrid system, the Cp*Rh(III)-dithiophosphate complex with latent catalytic activity was utilized as a precursor of the metal cofactor. Strong chelation of the dithiophosphate ligands protects the rhodium complex from being deactivated by abundant nucleophiles in cellular environments during conjugation of the cofactor with the protein scaffold. The whole-cell biohybrid catalyst was then activated upon addition of Ag+ ion to dissociate the dithiophosphate ligands and promoted cycloaddition of acetophenone oxime with diphenylacetylene. Furthermore, the activity of the Cp*Rh(III)-linked whole-cell biohybrid catalyst was enhanced 2.1-fold by introducing glutamate residues at positions adjacent to the Cp*Rh(III) cofactor. These results indicate that the use of the Cp*Rh(III)-dithiophosphate complex with switchable activity from a "latent" form to an "active" form provides a new strategy for generating whole-cell biohybrid catalysts.


Asunto(s)
Complejos de Coordinación/química , Ciclopentanos/química , Escherichia coli/química , Rodio/química , Catálisis , Reacción de Cicloadición , Plata/química
2.
Inorg Chem ; 59(19): 14457-14463, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32914980

RESUMEN

A Cp*Rh(III)-dithiophosphate cofactor with "latent" catalytic activity was developed to construct an artificial metalloenzyme representing a new type of biohybrid catalyst which is capable of promoting C(sp2)-H bond functionalization within the ß-barrel structure of nitrobindin (NB). To covalently conjugate the Cp*Rh(III) cofactor into a specific position of the hydrophobic cavity of NB via a maleimide-Cys linkage, strong chelation of the dithiophosphate ligand is employed to protect the rhodium metal center against attack by nucleophilic amino acid residues in the protein. It is found that subsequent addition of the Ag+ ion induces dissociation of the dithiophosphate ligands, thereby activating the catalytic activity of the Cp*Rh(III) cofactor. The resulting "active" biohybrid catalyst promotes cycloaddition of acetophenone oxime with diphenylacetylene via C(sp2)-H bond activation. This catalytic activity is enhanced 2.3-fold with the introduction of two glutamate residues (A100E/L125E) adjacent to the Cp*Rh(III) cofactor. The Cp*Rh(III) cofactor with switchable activity from a "latent" form to an "active" form provides a new strategy for generating biohybrid catalysts incorporating a variety of highly reactive transition metal complexes specifically within its protein scaffolds.


Asunto(s)
Materiales Biomiméticos/química , Carbono/química , Complejos de Coordinación/química , Hidrógeno/química , Fosfatos/química , Proteínas/química , Rodio/química , Catálisis , Oximas/química , Plata/química
3.
Bioconjug Chem ; 30(3): 714-720, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30642174

RESUMEN

Adhesion promoting peptides have been reported to enable efficient enzyme immobilization on various material surfaces. Here we report the first immobilization of a synthetic Grubbs-Hoveyda (GH) type catalyst on two different materials (silica and polypropylene). To this end, the GH catalyst was coupled to an engineered (F16C) variant of the adhesion promoting peptide LCI through thiol-maleimide "click" reaction. Immobilization was performed in an oriented manner through the adhesion promoting peptide by simple incubation with the materials in water and subsequent washing with water and tetrahydrofuran. The immobilized GH catalyst was probed in ring-opening metathesis polymerization of a norbornene derivative to alter the surface properties in a layer-by-layer fashion.


Asunto(s)
Péptidos/química , Polimerizacion , Catálisis , Ciclización , Polipropilenos/química , Dióxido de Silicio/química , Propiedades de Superficie
4.
Sci Rep ; 7: 41746, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28150709

RESUMEN

Human pathogenic positive single strand RNA ((+)ssRNA) viruses, including Chikungunya virus, pose severe health problems as for many neither efficient vaccines nor therapeutic strategies exist. To interfere with propagation, viral enzymatic activities are considered potential targets. Here we addressed the function of the viral macrodomains, conserved folds of non-structural proteins of many (+)ssRNA viruses. Macrodomains are closely associated with ADP-ribose function and metabolism. ADP-ribosylation is a post-translational modification controlling various cellular processes, including DNA repair, transcription and stress response. We found that the viral macrodomains possess broad hydrolase activity towards mono-ADP-ribosylated substrates of the mono-ADP-ribosyltransferases ARTD7, ARTD8 and ARTD10 (aka PARP15, PARP14 and PARP10, respectively), reverting this post-translational modification both in vitro and in cells. In contrast, the viral macrodomains possess only weak activity towards poly-ADP-ribose chains synthesized by ARTD1 (aka PARP1). Unlike poly-ADP-ribosylglycohydrolase, which hydrolyzes poly-ADP-ribose chains to individual ADP-ribose units but cannot cleave the amino acid side chain - ADP-ribose bond, the different viral macrodomains release poly-ADP-ribose chains with distinct efficiency. Mutational and structural analyses identified key amino acids for hydrolase activity of the Chikungunya viral macrodomain. Moreover, ARTD8 and ARTD10 are induced by innate immune mechanisms, suggesting that the control of mono-ADP-ribosylation is part of a host-pathogen conflict.


Asunto(s)
Virus Chikungunya/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Virus ARN/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Catálisis , Virus Chikungunya/genética , Secuencia Conservada , Activación Enzimática , Humanos , Hidrólisis , Modelos Moleculares , Mutación , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas/genética , Virus ARN/genética , Especificidad por Sustrato , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA