Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 247: 116240, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820837

RESUMEN

Serum 1H NMR metabolomics has been used as a diagnostic tool for screening type 2 diabetes (T2D) with chronic kidney disease (CKD) as comorbidity. This work aimed to evaluate 1H NMR data to detect the initial kidney damage and CKD in T2D subjects, through multivariate statistical analysis. Clinical data and biochemical parameters were obtained for classifying five experimental groups using KDIGO guidelines: Control (healthy subjects), T2D, T2D-CKD-mild, T2D-CKD-moderate, and T2D-CKD-severe. Serum 1H NMR spectra were recorded to follow two strategies: one based on metabolite-to-creatinine (Met/Cr) ratios as targeted metabolomics, and the second one based on untargeted metabolomics from the 1H NMR profile. A prospective biomarkers panel of the early stage of T2D-CKD based in metabolite-to-creatinine ratio (ornithine/Cr, serine/Cr, mannose/Cr, acetate/Cr, acetoacetate/Cr, formate/Cr, and glutamate/Cr) was proposed. Later, a statistical model based on non-targeted metabolomics was used to predict initial CKD, and its metabolic pathway analysis allowed identifying the most affected pathways: phenylalanine, tyrosine, and tryptophan biosynthesis; valine, leucine, and isoleucine degradation; glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism; and histidine metabolism. Nonetheless, further studies with a larger cohort are advised to precise ranges in metabolite-to-creatinine ratios and evaluate the prediction pertinency to detect initial CKD in T2D patients in both statistical models proposed.


Asunto(s)
Biomarcadores , Creatinina , Diabetes Mellitus Tipo 2 , Metabolómica , Insuficiencia Renal Crónica , Humanos , Metabolómica/métodos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/metabolismo , Persona de Mediana Edad , Biomarcadores/sangre , Femenino , Creatinina/sangre , Anciano , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/diagnóstico , Espectroscopía de Resonancia Magnética/métodos , Adulto , Estudios Prospectivos , Espectroscopía de Protones por Resonancia Magnética/métodos
2.
PeerJ ; 7: e7113, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275747

RESUMEN

BACKGROUND: Renal diseases represent a major public health problem. The demonstration that maladaptive repair of acute kidney injury (AKI) can lead to the development of chronic kidney disease (CKD) and end-stage renal disease has generated interest in studying the pathophysiological pathways involved. Animal models of AKI-CKD transition represent important tools to study this pathology. We hypothesized that the administration of multiple doses of folic acid (FA) would lead to a progressive loss of renal function that could be characterized through biochemical parameters, histological classification and nuclear magnetic resonance (NMR) profiling. METHODS: Wistar rats were divided into groups: the control group received a daily intraperitoneal (I.P.) injection of double-distilled water, the experimental group received a daily I.P. injection of FA (250 mg kg body weight-1). Disease was classified according to blood urea nitrogen level: mild (40-80 mg dL-1), moderate (100-200 mg dL-1) and severe (>200 mg dL-1). We analyzed through biochemical parameters, histological classification and NMR profiling. RESULTS: Biochemical markers, pro-inflammatory cytokines and kidney injury biomarkers differed significantly (P < 0.05) between control and experimental groups. Histology revealed that as damage progressed, the degree of tubular injury increased, and the inflammatory infiltrate was more evident. NMR metabolomics and chemometrics revealed differences in urinary metabolites associated with CKD progression. The main physiological pathways affected were those involved in energy production and amino-acid metabolism, together with organic osmolytes. These data suggest that multiple administrations of FA induce a reproducible model of the induction of CKD. This model could help to evaluate new strategies for nephroprotection that could be applied in the clinic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA