Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 5(31): 19315-19330, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803025

RESUMEN

The authors report on the effect of manganese (Mn) substitution on the crystal chemistry, morphology, particle size distribution characteristics, chemical bonding, structure, and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by a simple, cost-effective, and eco-friendly one-pot aqueous hydrothermal method. Crystal structure analyses indicate that the Mn(II)-substituted cobalt ferrites, Co1-x Mn x Fe2O4 (CMFO, x = 0.0-0.5), were crystalline with a cubic inverse spinel structure (space group Fd 3 m ). The average crystallite size increases from 8 to 14 nm with increasing Mn(II) content; the crystal growth follows an exponential growth function while the lattice parameters follow Vegard's law. Chemical bonding analyses made using Raman spectroscopic studies further confirm the cubic inverse spinel phase. The relative changes in specific vibrational modes related to octahedral sites as a function of Mn content suggest a gradual change of measure of inversion of the ferrite lattice at nanoscale dimensions. Small-angle X-ray scattering and electron microscopy revealed a narrow particle size distribution with the spherical shape morphology of the CMFO NPs. The zero-field-cooled and field-cooled magnetic measurements revealed the superparamagnetic behavior of CMFO NPs at room temperature. The sample with x = 0.3 indicates a lower value of blocking temperature (9.16 K) with the improved (maximum) value of saturation magnetization. The results and the structure-composition-property correlation suggest that the economic, eco-friendly hydrothermal approach can be adopted to process superparamagnetic nanostructured magnetic materials at a relatively lower temperature for practical electronic and electromagnetic device applications.

2.
ACS Nano ; 8(3): 2077-86, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24494773

RESUMEN

FeSe has been an interesting member of the Fe-based superconductor family ever since the discovery of superconductivity in this simple binary chalcogenide. Simplicity of composition and ease of synthesis has made FeSe, in particular, very lucrative as a test system to understand the unconventional nature of superconductivity, especially in low-dimensional models. In this article we report the synthesis of composite nanoparticles containing FeSe nanoislands entrapped within an ent-FeSe-Pd16Se15-Au nanoparticle and sharing an interface with Pd17Se15. This assembly exhibits a significant enhancement in the superconducting Tc (onset at 33 K) accompanied by a noticeable lattice compression of FeSe along the <001> and <101> directions. The Tc in FeSe is very sensitive to application of pressure and it has been shown that with increasing external pressure Tc can be increased almost 4-fold. In these composite nanoparticles reported here, immobilization of FeSe on the Pd17Se15 surface contributes to increasing the effect of interfacial pressure, thereby enhancing the Tc. The effect of interfacial pressure is also manifested in the contraction of the FeSe lattice (up to 3.8% in <001> direction) as observed through extensive high-resolution TEM imaging. The confined FeSe in these nanoparticles occupied a region of approximately 15-25 nm, where lattice compression was uniform over the entire FeSe region, thereby maximizing its effect in enhancing the Tc. The nanoparticles have been synthesized by a simple catalyst-aided vapor transport reaction at 800 °C where iron acetylacetonate and Se were used as precursors. Morphology and composition of these nanoparticles have been studied in details through extensive electron microscopy.

3.
Biomacromolecules ; 14(11): 4108-15, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24164501

RESUMEN

Dendrimer chemistries have virtually exploded in recent years with increasing interest in this class of polymers as gene delivery vehicles. An effective nucleic acid delivery vehicle must efficiently bind its cargo and form physically stable complexes. Most importantly, the nucleic acid must be protected in biological fluids and tissues, as RNA is extremely susceptible to nuclease degradation. Here, we characterized the association of nucleic acids with generation 4 PEGylated poly(amidoamine) dendrimer (mPEG-PAMAM-G4). We investigated the formation, size, and stability over time of the nanoplexes at various N/P ratios by gel shift and dynamic light scatter spectroscopy (DLS). Further characterization of the mPEG-PAMAM-G4/nucleic acid association was provided by atomic force microscopy (AFM) and by circular dichroism (CD). Importantly, mPEG-PAMAM-G4 complexation protected RNA from treatment with RNase A, degradation in serum, and various tissue homogenates. mPEG-PAMAM-G4 complexation also significantly enhanced the functional delivery of RNA in a novel engineered human melanoma cell line with splice-switching oligonucleotides (SSOs) targeting a recombinant luciferase transcript. mPEG-PAMAM-G4 triconjugates formed between gold nanoparticle (GNP) and particularly manganese oxide (MnO) nanorods, poly IC, an anticancer RNA, showed enhanced cancer-killing activity by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay.


Asunto(s)
Empalme Alternativo/genética , Dendrímeros/química , Nylons/química , Oligonucleótidos/genética , Poli I-C/metabolismo , Polietilenglicoles/química , Ribonucleasa Pancreática/metabolismo , Animales , Antineoplásicos/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Dendrímeros/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Femenino , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Microscopía de Fuerza Atómica , Estructura Molecular , Nanoestructuras/química , Nylons/farmacología , Oligonucleótidos/metabolismo , Poli I-C/genética , Polietilenglicoles/farmacología , ARN/genética , ARN/metabolismo , Estabilidad del ARN/efectos de los fármacos
4.
Electrochim Acta ; 97: 99-104, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25684785

RESUMEN

We describe the synthesis of zinc oxide (ZnO) nanoparticles and demonstrate their attachment to multiwalled carbon tubes, resulting in a composite with a unique synergistic effect. Morphology and size of ZnO nanostructures were controlled using hydrothermal synthesis, varying the hydrothermal treatment temperature, prior to attachment to carboxylic acid functionalized multi-walled carbon nanotubes for sensing applications. A strong dependence of electrocatalytic activity on nanosized ZnO shape was shown. High activity for H2O2 reduction was achieved when nanocomposite precursors with a roughly semi-spherical morphology (no needle-like particles present) formed at 90 °C. A 2.4-fold increase in cyclic voltammetry current accompanied by decrease in overpotential from the composites made from the nanosized, needle-like-free ZnO shapes was observed as compared to those composites produced from needle-like shaped ZnO. Electrocatalytic activity varied with pH, maximizing at pH 7.4. A stable, linear response for H2O2 concentrations was observed in the 1-20 mM concentration range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA