Morphology of hydrothermally synthesized ZnO nanoparticles tethered to carbon nanotubes affects electrocatalytic activity for H2O2 detection.
Electrochim Acta
; 97: 99-104, 2013 May 01.
Article
en En
| MEDLINE
| ID: mdl-25684785
We describe the synthesis of zinc oxide (ZnO) nanoparticles and demonstrate their attachment to multiwalled carbon tubes, resulting in a composite with a unique synergistic effect. Morphology and size of ZnO nanostructures were controlled using hydrothermal synthesis, varying the hydrothermal treatment temperature, prior to attachment to carboxylic acid functionalized multi-walled carbon nanotubes for sensing applications. A strong dependence of electrocatalytic activity on nanosized ZnO shape was shown. High activity for H2O2 reduction was achieved when nanocomposite precursors with a roughly semi-spherical morphology (no needle-like particles present) formed at 90 °C. A 2.4-fold increase in cyclic voltammetry current accompanied by decrease in overpotential from the composites made from the nanosized, needle-like-free ZnO shapes was observed as compared to those composites produced from needle-like shaped ZnO. Electrocatalytic activity varied with pH, maximizing at pH 7.4. A stable, linear response for H2O2 concentrations was observed in the 1-20 mM concentration range.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
Electrochim Acta
Año:
2013
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos