Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791375

RESUMEN

The presence of molecular mutations in colorectal cancer (CRC) is a decisive factor in selecting the most effective first-line therapy. However, molecular analysis is routinely performed only in a limited number of patients with remote metastases. We propose to use tissue stiffness as a marker of the presence of molecular mutations in CRC samples. For this purpose, we applied compression optical coherence elastography (C-OCE) to calculate stiffness values in regions corresponding to specific CRC morphological patterns (n = 54). In parallel to estimating stiffness, molecular analysis from the same zones was performed to establish their relationships. As a result, a high correlation between the presence of KRAS/NRAS/BRAF driver mutations and high stiffness values was revealed regardless of CRC morphological pattern type. Further, we proposed threshold stiffness values for label-free targeted detection of molecular alterations in CRC tissues: for KRAS, NRAS, or BRAF driver mutation-above 803 kPa (sensitivity-91%; specificity-80%; diagnostic accuracy-85%), and only for KRAS driver mutation-above 850 kPa (sensitivity-90%; specificity-88%; diagnostic accuracy-89%). To conclude, C-OCE estimation of tissue stiffness can be used as a clinical diagnostic tool for preliminary screening of genetic burden in CRC tissues.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Diagnóstico por Imagen de Elasticidad , GTP Fosfohidrolasas , Mutación , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico , Diagnóstico por Imagen de Elasticidad/métodos , Biomarcadores de Tumor/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , GTP Fosfohidrolasas/genética , Femenino , Masculino , Elasticidad , Anciano , Proteínas de la Membrana/genética , Persona de Mediana Edad
2.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069338

RESUMEN

A decrease in the regenerative potential of the liver during the development of non-alcoholic fatty liver disease (NAFLD), which is observed in the vast majority of patients with diabetes mellitus type 1, significantly increases the risk of postoperative liver failure. In this regard, it is necessary to develop new approaches for the rapid intraoperative assessment of the condition of liver tissue in the presence of concomitant liver pathology. A modern label-free approach based on multiphoton microscopy, second harmonic generation (SHG), and fluorescence lifetime imaging microscopy (FLIM) allow for the evaluation of the structure of liver tissue as well as the assessment of the metabolic state of hepatocytes, even at the cellular level. We obtained optical criteria and identified specific changes in the metabolic state of hepatocytes for a reduced liver regenerative potential in the presence of induced diabetes mellitus type 1. The obtained criteria will expand the possibilities for the express assessment of the structural and functional state of liver tissue in clinical practice.


Asunto(s)
Diabetes Mellitus , Microscopía de Fluorescencia por Excitación Multifotónica , Humanos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Hígado/metabolismo , Hepatocitos/metabolismo , Metabolismo Energético , Diabetes Mellitus/metabolismo
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298064

RESUMEN

Liver regeneration has been studied for many decades, and the mechanisms underlying regeneration of normal liver following resection are well described. However, no less relevant is the study of mechanisms that disrupt the process of liver regeneration. First of all, a violation of liver regeneration can occur in the presence of concomitant hepatic pathology, which is a key factor reducing the liver's regenerative potential. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or to directly stimulate liver regeneration. This review describes the known mechanisms of normal liver regeneration and factors that reduce its regenerative potential, primarily at the level of hepatocyte metabolism, in the presence of concomitant hepatic pathology. We also briefly discuss promising strategies for stimulating liver regeneration and those concerning methods for assessing the regenerative potential of the liver, especially intraoperatively.


Asunto(s)
Regeneración Hepática , Hígado , Hígado/metabolismo , Hepatocitos/metabolismo , Hepatectomía
4.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298155

RESUMEN

Abuse with hepatotoxic agents is a major cause of acute liver failure. The search for new criteria indicating the acute or chronic pathological processes is still a challenging issue that requires the selection of effective tools and research models. Multiphoton microscopy with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM) are modern label-free methods of optical biomedical imaging for assessing the metabolic state of hepatocytes, therefore reflecting the functional state of the liver tissue. The aim of this work was to identify characteristic changes in the metabolic state of hepatocytes in precision-cut liver slices (PCLSs) under toxic damage by some of the most common toxins: ethanol, carbon tetrachloride (CCl4) and acetaminophen (APAP), commonly known as paracetamol. We have determined characteristic optical criteria for toxic liver damage, and these turn out to be specific for each toxic agent, reflecting the underlying pathological mechanisms of toxicity. The results obtained are consistent with standard methods of molecular and morphological analysis. Thus, our approach, based on optical biomedical imaging, is effective for intravital monitoring of the state of liver tissue in the case of toxic damage or even in cases of acute liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fallo Hepático Agudo , Humanos , Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico por imagen , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Fallo Hepático Agudo/diagnóstico por imagen , Fallo Hepático Agudo/metabolismo , Etanol/toxicidad , Tetracloruro de Carbono/toxicidad
5.
Stem Cell Res Ther ; 14(1): 81, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046354

RESUMEN

BACKGROUND: There is an urgent clinical need for targeted strategies aimed at the treatment of bone defects resulting from fractures, infections or tumors. 3D scaffolds represent an alternative to allogeneic MSC transplantation, due to their mimicry of the cell niche and the preservation of tissue structure. The actual structure of the scaffold itself can affect both effective cell adhesion and its osteoinductive properties. Currently, the effects of the structural heterogeneity of scaffolds on the behavior of cells and tissues at the site of damage have not been extensively studied. METHODS: Both homogeneous and heterogeneous scaffolds were generated from poly(L-lactic acid) methacrylated in supercritical carbon dioxide medium and were fabricated by two-photon polymerization. The homogeneous scaffolds consist of three layers of cylinders of the same diameter, whereas the heterogeneous (gradient pore sizes) scaffolds contain the middle layer of cylinders of increased diameter, imitating the native structure of spongy bone. To evaluate the osteoinductive properties of both types of scaffold, we performed in vitro and in vivo experiments. Multiphoton microscopy with fluorescence lifetime imaging microscopy was used for determining the metabolic states of MSCs, as a sensitive marker of cell differentiation. The results obtained from this approach were verified using standard markers of osteogenic differentiation and based on data from morphological analysis. RESULTS: The heterogeneous scaffolds showed improved osteoinductive properties, accelerated the metabolic rearrangements associated with osteogenic differentiation, and enhanced the efficiency of bone tissue recovery, thereby providing for both the development of appropriate morphology and mineralization. CONCLUSIONS: The authors suggest that the heterogeneous tissue constructs are a promising tool for the restoration of bone defects. And, furthermore, that our results demonstrate that the use of label-free bioimaging methods can be considered as an effective approach for intravital assessment of the efficiency of differentiation of MSCs on scaffolds.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Andamios del Tejido/química , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos/métodos , Diferenciación Celular , Células Madre , Células Cultivadas
6.
Cells ; 12(3)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766821

RESUMEN

To reduce the risk of post-hepatectomy liver failure in patients with hepatic pathologies, it is necessary to develop an approach to express the intraoperative assessment of the liver's regenerative potential. Traditional clinical methods do not enable the prediction of the function of the liver remnant. Modern label-free bioimaging, using multiphoton microscopy in combination with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM), can both expand the possibilities for diagnosing liver pathologies and for assessing the regenerative potential of the liver. Using multiphoton and SHG microscopy, we assessed the structural state of liver tissue at different stages of induced steatosis and fibrosis before and after 70% partial hepatectomy in rats. Using FLIM, we also performed a detailed analysis of the metabolic state of the hepatocytes. We were able to determine criteria that can reveal a lack of regenerative potential in violated liver, such as the presence of zones with reduced NAD(P)H autofluorescence signals. Furthermore, for a liver with pathology, there was an absence of the jump in the fluorescence lifetime contributions of the bound form of NADH and NADPH the 3rd day after hepatectomy that is characteristic of normal liver regeneration. Such results are associated with decreased intensity of oxidative phosphorylation and of biosynthetic processes in pathological liver, which is the reason for the impaired liver recovery. This modern approach offers an effective tool that can be successfully translated into the clinic for express, intraoperative assessment of the regenerative potential of the pathological liver of a patient.


Asunto(s)
Regeneración Hepática , Hígado , Ratas , Animales , Hígado/diagnóstico por imagen , Hígado/patología , Microscopía Fluorescente , Imagen Óptica , Fibrosis
7.
Cells ; 11(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36078136

RESUMEN

iPSCs and their derivatives are the most promising cell sources for creating skin equivalents. However, their properties are not fully understood. In addition, new approaches and parameters are needed for studying cells in 3D models without destroying their organization. Thus, the aim of our work was to study and compare the metabolic status and pH of dermal spheroids created from dermal papilla cells differentiated from pluripotent stem cells (iDP) and native dermal papilla cells (hDP) using fluorescence microscopy and fluorescence lifetime imaging microscopy (FLIM). For this purpose, fluorescence intensities of NAD(P)H and FAD, fluorescence lifetimes, and the contributions of NAD(P)H, as well as the fluorescence intensities of SypHer-2 and BCECF were measured. iDP in spheroids were characterized by a more glycolytic phenotype and alkaline intra-cellular pH in comparison with hDP cells. Moreover, the metabolic activity of iDP in spheroids depends on the source of stem cells from which they were obtained. So, less differentiated and condensed spheroids from iDP-iPSDP and iDP-iPSKYOU are characterized by a more glycolytic phenotype compared to dense spheroids from iDP-DYP0730 and iDP-hES. FLIM and fluorescent microscopy in combination with the metabolism and pH are promising tools for minimally invasive and long-term analyses of 3D models based on stem cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Fluorescente , NAD/metabolismo
9.
Sci Rep ; 12(1): 4476, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296739

RESUMEN

Cellular redox status and the level of reactive oxygen species (ROS) are important regulators of apoptotic potential, playing a crucial role in the growth of cancer cell and their resistance to apoptosis. However, the relationships between the redox status and ROS production during apoptosis remain poorly explored. In this study, we present an investigation on the correlations between the production of ROS, the redox ratio FAD/NAD(P)H, the proportions of the reduced nicotinamide cofactors NADH and NADPH, and caspase-3 activity in cancer cells at the level of individual cells. Two-photon excitation fluorescence lifetime imaging microscopy (FLIM) was applied to monitor simultaneously apoptosis using the genetically encoded sensor of caspase-3, mKate2-DEVD-iRFP, and the autofluorescence of redox cofactors in colorectal cancer cells upon stimulation of apoptosis with staurosporine, cisplatin or hydrogen peroxide. We found that, irrespective of the apoptotic stimulus used, ROS accumulation correlated well with both the elevated pool of mitochondrial, enzyme-bound NADH and caspase-3 activation. Meanwhile, a shift in the contribution of bound NADH could develop independently of the apoptosis, and this was observed in the case of cisplatin. An increase in the proportion of bound NADPH was detected only in staurosporine-treated cells, this likely being associated with a high level of ROS production and their resulting detoxification. The results of the study favor the discovery of new therapeutic strategies based on manipulation of the cellular redox balance, which could help improve the anti-tumor activity of drugs and overcome apoptotic resistance.


Asunto(s)
NAD , Neoplasias , Apoptosis , Caspasa 3/metabolismo , Cisplatino , Microscopía Fluorescente/métodos , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Estaurosporina/farmacología
10.
Biomedicines ; 9(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34829971

RESUMEN

Brain diseases including Down syndrome (DS/TS21) are known to be characterized by changes in cellular metabolism. To adequately assess such metabolic changes during pathological processes and to test drugs, methods are needed that allow monitoring of these changes in real time with minimally invasive effects. Thus, the aim of our work was to study the metabolic status and intracellular pH of spheroids carrying DS using fluorescence microscopy and FLIM. For metabolic analysis we measured the fluorescence intensities, fluorescence lifetimes and the contributions of the free and bound forms of NAD(P)H. For intracellular pH assay we measured the fluorescence intensities of SypHer-2 and BCECF. Data were processed with SPCImage and Fiji-ImageJ. We demonstrated the predominance of glycolysis in TS21 spheroids compared with normal karyotype (NK) spheroids. Assessment of the intracellular pH indicated a more alkaline intracellular pH in the TS21 spheroids compared to NK spheroids. Using fluorescence imaging, we performed a comprehensive comparative analysis of the metabolism and intracellular pH of TS21 spheroids and showed that fluorescence microscopy and FLIM make it possible to study living cells in 3D models in real time with minimally invasive effects.

11.
Biochim Biophys Acta Gen Subj ; 1865(12): 129978, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34487824

RESUMEN

BACKGROUND: Therapeutic effects of PDT depend on many factors, including the amount of singlet oxygen, localization of photosensitizer and irradiation protocol. The present study was aimed to compare the cytotoxic mechanisms of PDT under continuous-wave (CW) and pulsed irradiation using a tumor spheroid model and a genetically encoded photosensitizer miniSOG. METHODS: 1O2 detection in miniSOG and flavin mononucleotide (FMN) solutions was performed. Photobleaching of miniSOG in solution and in HeLa tumor spheroids was analyzed. Tumor spheroid morphology and growth and the cell death mechanisms after PDT in CW and pulsed modes were assessed. RESULTS: We found a more rapid 1O2 generation and a higher photobleaching rate in miniSOG solution upon irradiation in pulsed mode compared to CW mode. Photobleaching of miniSOG in tumor spheroids was also higher after irradiation in the pulsed mode. PDT of spheroids in CW mode resulted in a moderate expansion of the necrotic core of tumor spheroids and a slight inhibition of spheroid growth. The pulsed mode was more effective in induction of cell death, including apoptosis, and suppression of spheroid growth. CONCLUSIONS: Comparison of CW and pulsed irradiation modes in PDT with miniSOG showed more pronounced cytotoxic effects of the pulsed mode. Our results suggest that the pulsed irradiation regimen enables enhanced 1O2 production by photosensitizer and stimulates apoptosis. GENERAL SIGNIFICANCE: Our results provide more insights into the cellular mechanisms of anti-cancer PDT and open the way to improvement of light irradiation protocols.


Asunto(s)
Triazenos , Muerte Celular , Fármacos Fotosensibilizantes
12.
Cell Cycle ; 20(16): 1540-1551, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34308742

RESUMEN

Genetically encoded pH-sensors are the promising instrument for intracellular pH (pHi) registration. In tumor tissue the reversed pH gradient is known to be the important hallmark of cancer and regulator of tumor response on chemotherapy. However the effect of chemotherapeutic drugs on the pHi of tumor cells is largely unknown. Here we using genetically encoded ratiometric pH-sensor SypHer2 were able to monitor pHi in vitro in cell monolayer and tumor spheroids and in vivo in tumor xenografts. In tumor cell monolayer different pHi dynamic was revealed in the dying cell and division-arrested surviving cells. The treatment effect of taxol varied in monolayer and tumor spheroids and pHi changes were able to reflect these difference. The tend to pHi decrease in respect to taxol in vivo matched with results obtained for the cell monolayer. Also in both cases the cell cycle-arrest was the main treatment effect in contrast to tumor spheroid, where the cell death was the primary result. These findings elucidate the significance of pHi in the mechanisms of taxol action on cervical cancer cells and will be valuable for development of new approaches for cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Técnicas Biosensibles , Proliferación Celular/efectos de los fármacos , Microscopía Fluorescente , Paclitaxel/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Femenino , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Ratones Desnudos , Factores de Tiempo , Carga Tumoral , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cell Mol Life Sci ; 78(7): 3467-3476, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33555392

RESUMEN

The phase of the cell cycle determines numerous aspects of cancer cell behaviour including invasiveness, ability to migrate and responsiveness to cytotoxic drugs. To non-invasively monitor progression of cell cycle in vivo, a family of genetically encoded fluorescent indicators, FUCCI (fluorescent ubiquitination-based cell cycle indicator), has been developed. Existing versions of FUCCI are based on fluorescent proteins of two or more different colors fused to cell-cycle-dependent degradation motifs. Thus, FUCCI-expressing cells emit light of different colors in different phases providing a robust way to monitor cell cycle progression by fluorescence microscopy and flow cytometry but limiting the possibility to simultaneously visualize other markers. To overcome this limitation, we developed a single-color variant of FUCCI, called FUCCI-Red, which utilizes two red fluorescent proteins with distinct fluorescence lifetimes, mCherry and mKate2. Similarly to FUCCI, these proteins carry cell cycle-dependent degradation motifs to resolve G1 and S/G2/M phases. We showed utility of FUCCI-Red by visualizing cell cycle progression of cancer cells in 2D and 3D cultures and monitoring development of tumors in vivo by confocal and fluorescence lifetime imaging microscopy (FLIM). Single-channel registration and red-shifted spectra make FUCCI-Red sensor a promising instrument for multiparameter in vivo imaging applications, which was demonstrated by simultaneous detection of cellular metabolic state using endogenous fluorescence in the blue range.


Asunto(s)
Ciclo Celular , Neoplasias del Colon/patología , Colorantes Fluorescentes/química , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Imagen Individual de Molécula/métodos , Animales , Proliferación Celular , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Fluorescente Roja
14.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008362

RESUMEN

The newly developed multimodal imaging system combining raster-scan optoacoustic (OA) microscopy and fluorescence (FL) wide-field imaging was used for characterizing the tumor vascular structure with 38/50 µm axial/transverse resolution and assessment of photosensitizer fluorescence kinetics during treatment with novel theranostic agents. A multifunctional photoactivatable multi-inhibitor liposomal (PMILs) nano platform was engineered here, containing a clinically approved photosensitizer, Benzoporphyrin derivative (BPD) in the bilayer, and topoisomerase I inhibitor, Irinotecan (IRI) in its inner core, for a synergetic therapeutic impact. The optimized PMIL was anionic, with the hydrodynamic diameter of 131.6 ± 2.1 nm and polydispersity index (PDI) of 0.05 ± 0.01, and the zeta potential between -14.9 ± 1.04 to -16.9 ± 0.92 mV. In the in vivo studies on BALB/c mice with CT26 tumors were performed to evaluate PMILs' therapeutic efficacy. PMILs demonstrated the best inhibitory effect of 97% on tumor growth compared to the treatment with BPD-PC containing liposomes (PALs), 81%, or IRI containing liposomes (L-[IRI]) alone, 50%. This confirms the release of IRI within the tumor cells upon PMILs triggering by NIR light, which is additionally illustrated by FL monitoring demonstrating enhancement of drug accumulation in tumor initiated by PDT in 24 h after the treatment. OA monitoring revealed the largest alterations of the tumor vascular structure in the PMILs treated mice as compared to BPD-PC or IRI treated mice. The results were further corroborated with histological data that also showed a 5-fold higher percentage of hemorrhages in PMIL treated mice compared to the control groups. Overall, these results suggest that multifunctional PMILs simultaneously delivering PDT and chemotherapy agents along with OA and FL multi-modal imaging offers an efficient and personalized image-guided platform to improve cancer treatment outcomes.

15.
Front Pediatr ; 8: 577, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042920

RESUMEN

Objectives: Mutations in the neuroblastoma-amplified sequence (NBAS) gene were originally described in patients with skeletal dysplasia or isolated liver disease of variable severity. Subsequent publications reported a more complex phenotype. Among multisystemic clinical symptoms, we were particularly interested in the immunological consequences of the NBAS deficiency. Methods: Clinical and laboratory data of 3 patients ages 13, 6, and 5 in whom bi-allelic NBAS mutations had been detected via next-generation sequencing were characterized. Literature review of 23 publications describing 74 patients was performed. Results: We report three Russian patients with compound heterozygous mutations of the NBAS gene who had combined immunodeficiency characterized by hypogammaglobulinemia, low T-cells, and near-absent B-cells, along with liver disease, skeletal dysplasia, optic-nerve atrophy, and dysmorphic features. Analysis of the data of 74 previously reported patients who carried various NBAS mutations demonstrated that although the most severe form of liver disease seems to require disruption of the N-terminal or middle part of NBAS, mutations of variable localizations in the gene have been associated with some form of liver disease, as well as immunological disorders. Conclusions: NBAS deficiency has a broad phenotype, and referral to an immunologist should be made in order to screen for immunodeficiency.

16.
Opt Lett ; 43(13): 3152-3155, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29957804

RESUMEN

While laser scanning fluorescence lifetime imaging (FLIM) is a powerful approach for cell biology, its small field of view (typically less than 1 mm) makes it impractical for the imaging of large biological samples that is often required for biomedical applications. Here we present a system that allows performing FLIM on macroscopic samples as large as 18 mm with a lateral resolution of 15 µm. The performance of the system is verified with FLIM of endogenous metabolic cofactor reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H, and genetically encoded fluorescent protein mKate2 in a mouse tumor in vivo.

17.
J Photochem Photobiol B ; 178: 614-622, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29277008

RESUMEN

The use of polymeric carriers to deliver hydrophobic photosensitizers has been widely discussed as a way to improve both fluorescence diagnostic and photodynamic therapy (PDT) of cancers; however, the photophysical and pharmacokinetic parameters, as well as the PDT activity, of such modifications have, until now, only been poorly investigated. The purpose of the present study was to explore the efficacy of PDT with the formulation of the photosensitizer chlorin e6 (Ce6) in combination with polyvinyl alcohol (PVA) in comparison with Ce6 alone and with the clinical drug, Photodithazine in a mouse tumor model. We also investigated the photoactivity of the Ce6-PVA in a model reaction of tryptophan oxidation, analyzed the polymer-Ce6 interaction using fluorescence spectroscopy and atomic-force microscopy, and tested the phototoxicity in vitro. Using fluorescence imaging in vivo we found that injection to mice of Ce6 in a formulation with PVA resulted in a higher tumor-to-normal ratio and greater photobleaching when compared with either the use of Ce6 alone, or with the effects of Photodithazine. Tumor growth study and histological examination of CT26 tumors revealed fast, reproducible tumor regression and more advanced necrosis after PDT with Ce6-PVA. The higher photoactivity of the Ce6-PVA complex was confirmed in a model reaction of tryptophan oxidation and in cultured cells. Therefore, encapsulation of Ce6 in PVA represents a promising strategy for further increasing the selectivity and efficacy of PDT.


Asunto(s)
Fármacos Fotosensibilizantes/química , Alcohol Polivinílico/química , Porfirinas/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Clorofilidas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Microscopía de Fuerza Atómica , Microscopía Confocal , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Oxidación-Reducción , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/toxicidad , Especies Reactivas de Oxígeno , Espectrometría de Fluorescencia , Trasplante Homólogo , Triptófano/química , Imagen de Cuerpo Entero
18.
Biochim Biophys Acta Gen Subj ; 1861(12): 3120-3130, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28916141

RESUMEN

BACKGROUND: A promising strategy for cancer diagnosis and therapy is the development of an agent for multimodal imaging and treatment. In the present paper we report on two novel multifunctional agents prepared on the porphyrazine pigment platform using a gadolinium (III) cation chelated by red-fluorescent tetrapyrrole macrocycles (GdPz1 and GdPz2). METHODS: Spectral and magnetic properties of the compounds were analyzed. Monitoring of GdPz1 and GdPz2 accumulation in the murine colon carcinoma CT26 was performed in vivo using fluorescence imaging and MRI. The photobleaching of GdPz1 or GdPz2 and tumor growth rate after photodynamic therapy (PDT) were assessed. RESULTS: GdPz1 and GdPz2 demonstrated the selective accumulation in tumor that was indicated by higher fluorescence intensity in the tumor area in comparison with the normal tissues. The results of MRI in vivo showed that GdPz1 or GdPz2 provided significant contrast enhancement of the tumor in T1 MR images. PDT with GdPz2 resulted in ~20% decrease in fluorescence intensity of the compound and the inhibition of tumor growth. CONCLUSIONS: We assessed the efficiency of two innovative Gd(III) cation-porphyrazine chelates as bimodal MR and fluorescent probes and photosensitizers for PDT and showed their potentials for tumor diagnostics and treatment. GENERAL SIGNIFICANCE: Water-soluble structures simple in preparation and administration into the body represent special interest for theranostics of tumors. Novel porphyrazine macrocycles chelating a central gadolinium cation demonstrated a good prospect as effective multimodal agents, representing a new approach to MRI and fluorescence imaging guided PDT.


Asunto(s)
Imagen Multimodal , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Animales , Línea Celular Tumoral , Quelantes/administración & dosificación , Fluorescencia , Gadolinio , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen
19.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 604-611, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28063999

RESUMEN

A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Células Epiteliales/efectos de los fármacos , Estaurosporina/farmacología , Animales , Apoptosis/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Cumarinas/química , Activación Enzimática/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica , Genes Reporteros , Glucólisis/efectos de los fármacos , Concentración de Iones de Hidrógeno , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , Sondas Moleculares/química , NADP/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA