RESUMEN
Airway epithelial cells (AEC) infected with SARS-CoV-2 may drive the dysfunction of macrophages during COVID-19. We hypothesized that the direct interaction of AEC with macrophages mediated by CD95/CD95L or indirect interaction mediated by IL-6 signaling are key steps for the COVID-19 severe acute inflammation. The interaction of macrophages with apoptotic and infected AEC increased CD95 and CD163 expression, and induced macrophage death. Macrophages exposed to tracheal aspirate with high IL-6 levels from intubated patients with COVID-19 or to recombinant human IL-6 exhibited decreased HLA-DR expression, increased CD95 and CD163 expression and IL-1ß production. IL-6 effects on macrophages were prevented by both CD95/CD95L antagonist and by IL-6 receptor antagonist and IL-6 or CD95 deficient mice showed significant reduction of acute pulmonary inflammation post-infection. Our findings show a non-canonical CD95L-CD95 pathway that simultaneously drives both macrophage activation and dysfunction and point to CD95/CD95L axis as therapeutic target.
RESUMEN
SARS-CoV-2 infection triggers distinct patterns of disease development characterized by significant alterations in host regulatory responses. Severe cases exhibit profound lung inflammation and systemic repercussions. Remarkably, critically ill patients display a "lipid storm", influencing the inflammatory process and tissue damage. Sphingolipids (SLs) play pivotal roles in various cellular and tissue processes, including inflammation, metabolic disorders, and cancer. In this study, we employed high-resolution mass spectrometry to investigate SL metabolism in plasma samples obtained from control subjects (n = 55), COVID-19 patients (n = 204), and convalescent individuals (n = 77). These data were correlated with inflammatory parameters associated with the clinical severity of COVID-19. Additionally, we utilized RNAseq analysis to examine the gene expression of enzymes involved in the SL pathway. Our analysis revealed the presence of thirty-eight SL species from seven families in the plasma of study participants. The most profound alterations in the SL species profile were observed in patients with severe disease. Notably, a predominant sphingomyelin (SM d18:1) species emerged as a potential biomarker for COVID-19 severity, showing decreased levels in the plasma of convalescent individuals. Elevated SM levels were positively correlated with age, hospitalization duration, clinical score, and neutrophil count, as well as the production of IL-6 and IL-8. Intriguingly, we identified a putative protective effect against disease severity mediated by SM (d18:1/24:0), while ceramide (Cer) species (d18:1/24:1) and (d18:1/24:0)were associated with increased risk. Moreover, we observed the enhanced expression of key enzymes involved in the SL pathway in blood cells from severe COVID-19 patients, suggesting a primary flow towards Cer generation in tandem with SM synthesis. These findings underscore the potential of SM as a prognostic biomarker for COVID-19 and highlight promising pharmacological targets. By targeting sphingolipid pathways, novel therapeutic strategies may emerge to mitigate the severity of COVID-19 and improve patient outcomes.
Asunto(s)
COVID-19 , Esfingomielinas , Humanos , Pronóstico , SARS-CoV-2/metabolismo , Ceramidas/metabolismo , Esfingolípidos/metabolismo , BiomarcadoresRESUMEN
Amphibians' skin is a rich source of natural antimicrobial peptides (AMPs). These AMPs exhibit marked inter- and intraspecific sequence divergence linked to the arms race between host and pathogens. Here, we combine peptidomics, molecular modeling, and phylogenetic analyses to understand the evolution of AMPs in Cophomantini, a diverse clade of neotropical tree frogs, and to investigate their interaction with bacterial membranes. Consistent with results in other amphibians, all species of Cophomantini secrete a mixture of peptides. We selected the hylin peptide family to survey sequence variability and the presence of common amino acid motifs. We found that most species secrete a unique set of hylins that, though variable, share the conserved motif Gly-X-X-X-Pro-Ala-X-X-Gly, with Gly and Pro colocalizing with charged or polar residues. Our modeling revealed that Pro curves the peptide through a hinge, facilitating its insertion into the bacterial membrane and, once inserted, contributes to stabilizing the pore structure. The phylogenetic inference using hylid prepro-peptides showed the need to classify new AMPs using the full-length sequence of the prepro-peptide region and highlighted the complex relationships between peptide families. Our findings revealed that conserved motifs occurred independently in distinct AMP families, suggesting a convergent evolution and a significant role in peptide-membrane interactions.
Asunto(s)
Péptidos Antimicrobianos , Péptidos , Humanos , Animales , Secuencia de Aminoácidos , Filogenia , Péptidos/química , Anuros/metabolismoRESUMEN
COVID-19 has a broad spectrum of clinical manifestations associated with the host immune response heterogeneity. Despite the advances in COVID-19 research, it is still crucial to seek a panel of molecular markers that enable accurate stratification of COVID-19 patients. Here, we performed a study that combined analysis of blood transcriptome, demographic data, clinical aspects and laboratory findings from 66 participants classified into different degrees of COVID-19 severity and healthy subjects. We identified a perturbation in blood-leukocyte transcriptional profile associated with COVID-19 aggravation, which was mainly related to processes that disfavoured lymphocyte activation and favoured neutrophil activation. This transcriptional profile stratified patients according to COVID-19 severity. Hence, it enabled identification of a turning point in transcriptional dynamics that distinguished disease outcomes and non-hospitalized from hospitalized moderate patients. Central genes of this unique neutrophil signature were S100A9, ANXA3, CEACAM6, VNN1, OLFM4, IL1R2, TCN1 and CD177. Our study indicates the molecular changes that are linked with the differing clinical aspects presented by humans when suffering from COVID-19, which involve neutrophil activation.
Asunto(s)
COVID-19 , Humanos , COVID-19/genética , Neutrófilos , Transcriptoma , BiomarcadoresRESUMEN
COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients (n = 200) and healthy controls (n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.
Asunto(s)
COVID-19 , Factor de Activación Plaquetaria , Humanos , Estudios Transversales , Endocannabinoides , Glucocorticoides/uso terapéuticoRESUMEN
The global emergence of coronavirus disease 2019 (COVID-19) has caused substantial human casualties. Clinical manifestations of this disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and hyperinflammation. In face of the urgent demand for effective drugs to treat COVID-19, we have searched for candidate compounds using in silico approach followed by experimental validation. Here we identified celastrol, a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F, as one of the best compounds out of 39 drug candidates. Celastrol reverted the gene expression signature from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells and irreversibly inhibited the recombinant forms of the viral and human cysteine proteases involved in virus invasion, such as Mpro (main protease), PLpro (papain-like protease), and recombinant human cathepsin L. Celastrol suppressed SARS-CoV-2 replication in human and monkey cell lines and decreased interleukin-6 (IL-6) secretion in the SARS-CoV-2-infected human cell line. Celastrol acted in a concentration-dependent manner, with undetectable signs of cytotoxicity, and inhibited in vitro replication of the parental and SARS-CoV-2 variant. Therefore, celastrol is a promising lead compound to develop new drug candidates to face COVID-19 due to its ability to suppress SARS-CoV-2 replication and IL-6 production in infected cells.
Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Triterpenos Pentacíclicos , Humanos , Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Interleucina-6 , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismoRESUMEN
Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid, 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE2, thromboxane B2, 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid, and 6-trans-leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1ß, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.
Asunto(s)
Acetilcolina , COVID-19 , Ácido Araquidónico , Ácidos Araquidónicos/farmacología , Ácidos Grasos , Glucocorticoides , Humanos , SARS-CoV-2RESUMEN
Patients with COVID-19 predominantly have a respiratory tract infection and acute lung failure is the most severe complication. While the molecular basis of SARS-CoV-2 immunopathology is still unknown, it is well established that lung infection is associated with hyper-inflammation and tissue damage. Matrix metalloproteinases (MMPs) contribute to tissue destruction in many pathological situations, and the activity of MMPs in the lung leads to the release of bioactive mediators with inflammatory properties. We sought to characterize a scenario in which MMPs could influence the lung pathogenesis of COVID-19. Although we observed high diversity of MMPs in lung tissue from COVID-19 patients by proteomics, we specified the expression and enzyme activity of MMP-2 in tracheal-aspirate fluid (TAF) samples from intubated COVID-19 and non-COVID-19 patients. Moreover, the expression of MMP-8 was positively correlated with MMP-2 levels and possible shedding of the immunosuppression mediator sHLA-G and sTREM-1. Together, overexpression of the MMP-2/MMP-8 axis, in addition to neutrophil infiltration and products, such as reactive oxygen species (ROS), increased lipid peroxidation that could promote intensive destruction of lung tissue in severe COVID-19. Thus, the inhibition of MMPs can be a novel target and promising treatment strategy in severe COVID-19.
Asunto(s)
COVID-19 , Metaloproteinasa 2 de la Matriz , Antígenos HLA-G , Humanos , Inmunidad , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Estrés Oxidativo , SARS-CoV-2RESUMEN
Lignan dinitrohinokinin displays important biological activities, which led to the preparation of its poly-ε-caprolactone nanoparticles. Kinetics analysis revealed initially slow drug release followed by a prolonged, moderate release 6 h later due to DNHK diffusion through the polymeric matrix. Molecular dynamics simulations show that DNHK molecules that interact stronger with other DNHK molecules near the PCL/DNHK surface are more difficult to dissociate from the nanoparticle. The smaller diameter nanocapsules with negative surface charge conferred good colloidal stability. The formulations showed a size distribution with monodisperse systems formation. In vivo evaluation of schistosomicidal activity against Schistosoma mansoni showed that DNHK, when incorporated into nanoparticles, caused egg number reduction of 4.2% and 28.1% at 40 mg/kg and 94.2% and 84.4% at 400 mg/kg in the liver and the spleen, respectively. The PCL nanoparticles were stable in aqueous dispersion and could be optimized to be used as a promising lignan release agent.
Asunto(s)
Lignanos , Nanopartículas , Esquistosomicidas , Portadores de Fármacos , Lignanos/farmacología , PoliésteresRESUMEN
The molecular bases for the symbiosis of the amphibian skin microbiome with its host are poorly understood. Here, we used the odor-producer Pseudomonas sp. MPFS and the treefrog Boana prasina as a model to explore bacterial genome determinants and the resulting mechanisms facilitating symbiosis. Pseudomonas sp. MPFS and its closest relatives, within a new clade of the P. fluoresens Group, have large genomes and were isolated from fishes and plants, suggesting environmental plasticity. We annotated 16 biosynthetic gene clusters from the complete genome sequence of this strain, including those encoding the synthesis of compounds with known antifungal activity and of odorous methoxypyrazines that likely mediate sexual interactions in Boana prasina. Comparative genomics of Pseudomonas also revealed that Pseudomonas sp. MPFS and its closest relatives have acquired specific resistance mechanisms against host antimicrobial peptides (AMPs), specifically two extra copies of a multidrug efflux pump and the same two-component regulatory systems known to trigger adaptive resistance to AMPs in P. aeruginosa. Subsequent molecular modeling indicated that these regulatory systems interact with an AMP identified in Boana prasina through the highly acidic surfaces of the proteins comprising their sensory domains. In agreement with a symbiotic relationship and a highly selective antibacterial function, this AMP did not inhibit the growth of Pseudomonas sp. MPFS but inhibited the growth of another Pseudomonas species and Escherichia coli in laboratory tests. This study provides deeper insights into the molecular interaction of the bacteria-amphibian symbiosis and highlights the role of specific adaptive resistance toward AMPs of the hosts.
Asunto(s)
Bacterias , Simbiosis , Animales , Anuros , Bacterias/genética , Genoma Bacteriano , GenómicaRESUMEN
Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients (n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.
Asunto(s)
Biomarcadores/sangre , COVID-19/diagnóstico , COVID-19/mortalidad , Leucocitos/metabolismo , Metaloproteinasa 8 de la Matriz/metabolismo , Índice de Severidad de la Enfermedad , Receptor Activador Expresado en Células Mieloides 1/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Brasil , Femenino , Humanos , Inflamación , Interleucina-10/sangre , Interleucina-6/sangre , Interleucina-8/sangre , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Estudios Prospectivos , SARS-CoV-2 , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Adulto JovenRESUMEN
Identifying dietary patterns that contribute to zinc (Zn) and fatty acids intake and their biomarkers that may have an impact on health of males and females. The present study was designed to (a) extract dietary patterns with foods that explain the variation of Zn and PUFAs intake in adult men and women; and (b) evaluate the association between the extracted dietary patterns with circulating levels of serum dihomo-γ-linolenic fatty acid (DGLA) or serum linoleic/dihomo-γ-linolenic (LA/DGLA) ratio in males and females. We used reduced rank regression (RRR) to extract the dietary patterns separated by sex in the NHANES 2011-2012 data. A dietary pattern with foods rich in Zn (1st quintile = 8.67 mg/day; 5th quintile = 11.11 mg/day) and poor in PUFAs (5th quintile = 15.28 g/day; 1st quintile = 18.03 g/day) was found in females (S-FDP2) and the same pattern, with foods poor in PUFAs (5th quintile = 17.6 g/day; 1st quintile = 20.7 g/day) and rich in Zn (1st quintile = 10.4 mg/day; 5th quintile = 12.9 mg/day) (S-MDP2), was found in males. The dietary patterns with foods rich in Zn and poor in PUFAs were negatively associated with serum LA/DGLA ratio. This is the first study to associate the LA/DGLA ratio with Zn and PUFAs related dietary patterns in males and females.
Asunto(s)
Ácido 8,11,14-Eicosatrienoico/sangre , Dieta , Ácidos Grasos Insaturados/administración & dosificación , Ácido Linoleico/sangre , Zinc/administración & dosificación , Estudios Transversales , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Encuestas Nutricionales , Estado Nutricional , Pronóstico , Estudios RetrospectivosRESUMEN
One of the factors limiting the search of new compounds based on the structure of target proteins involved in diseases is the limited amount of target structural information. Great advances in the search for lead compounds could be achieved to find new cavities in protein structures that are generated using well established computational chemistry tools. In the case of dengue, the discovery of pockets in the crystallographic structure of the E protein has contributed to the search for lead compounds aimed at interfering in conformational transitions involved in the pH-dependent fusion process. This is a complex mechanism triggered by the acid pH of the endosomes that leads to the initial changes in the E protein assembly at the virus surface. In the present work, an arrangement of three ectodomain portions of the E protein present on the surface of the mature dengue virus was studied through long all-atom molecular dynamics simulations with explicit solvent. In order to identify new pockets and to evaluate the influence of the acid pH on these pockets, the physiological neutral pH conditions and the acid pH of the endosomes that trigger the fusion process were modeled. Several pockets presenting pH-dependent characteristics were found in the contact regions between the chains. Pockets at the protein-protein interfaces induced by a monomer in another monomer were also found. Some of the pockets are good candidates for the design of lead compounds that could interfere in the rearrangements in E proteins along the fusion process contributing to the development of specific inhibitors of the dengue disease.
Asunto(s)
Virus del Dengue/química , Proteínas del Envoltorio Viral/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Pliegue de Proteína , Proteínas del Envoltorio Viral/análisisRESUMEN
The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.
Asunto(s)
Virus del Dengue/química , Dengue/metabolismo , Fusión de Membrana/fisiología , Simulación de Dinámica Molecular , Proteínas del Envoltorio Viral/química , Enlace de Hidrógeno , Concentración Osmolar , Conformación Proteica , TermodinámicaRESUMEN
Molecular dynamics simulations of the model protein chignolin with explicit solvent were carried out, in order to analyze the influence of the Berendsen thermostat on the evolution and folding of the peptide. The dependence of the peptide behavior on temperature was tested with the commonly employed thermostat scheme consisting of one thermostat for the protein and another for the solvent. The thermostat coupling time of the protein was increased to infinity, when the protein is not in direct contact with the thermal bath, a situation known as minimally invasive thermostat. In agreement with other works, it was observed that only in the last situation the instantaneous temperature of the model protein obeys a canonical distribution. As for the folding studies, it was shown that, in the applications of the commonly utilized thermostat schemes, the systems are trapped in local minima regions from which it has difficulty escaping. With the minimally invasive thermostat the time that the protein needs to fold was reduced by two to three times. These results show that the obstacles to the evolution of the extended peptide to the folded structure can be overcome when the temperature of the peptide is not directly controlled.