Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 733: 150675, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39284268

RESUMEN

BACKGROUND & AIMS: Lipid metabolism disorders contribute to a range of human diseases, including liver-related pathologies. Rabbits, highly sensitive to dietary cholesterol, provide a model for understanding the development of liver disorders. Sterol regulatory element-binding protein isoform 2 (SREBP2) crucially regulates intracellular cholesterol pathways. Extra-virgin olive oil (EVOO) has shown reducing cholesterol levels and restoring liver parameters affected by HFD. The aim was to investigate the molecular impact of an HFD and supplemented with EVOO on rabbit liver cholesterol metabolism. APPROACH & RESULTS: Male rabbits were assigned to dietary cohorts, including control, acute/chronic HFD, sequential HFD with EVOO, and EVOO. Parameters such as serum lipid profiles, hepatic enzymes, body weight, and molecular analyses. After 6 months of HFD, plasma and hepatic cholesterol increased with decreased SREBP2 and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) expression. Prolonged HFD increased cholesterol levels, upregulating SREBP2 mRNA and HMGCR protein. Combining this with EVOO lowered cholesterol, increased SREBP2 mRNA, and upregulated low-density lipoprotein receptor (LDLR) expression. HFD-induced metabolic dysfunction-associated fatty liver disease was mitigated by EVOO. In conclusion, the SREBP2 system responds to dietary changes. CONCLUSIONS: In rabbits, the SREBP2 system responds to dietary changes. Acute HFD hinders cholesterol synthesis, while prolonged HFD disrupts regulation, causing SREBP2 upregulation. EVOO intake prompts LDLR upregulation, potentially enhancing cholesterol clearance and restoring hepatic alterations.

2.
Mol Hum Reprod ; 27(5)2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33787903

RESUMEN

Male fertility has been shown to be dependent on cholesterol homeostasis. This lipid is essential for testosterone synthesis and spermatogenesis, but its levels must be maintained in an optimal range for proper testicular function. In particular, sperm cells' development is very sensitive to high cholesterol levels, noticeably during acrosomal formation. The aim of this work was to study whether the molecular pathway that regulates intracellular cholesterol, the sterol regulatory element-binding protein (SREBP) pathway, is affected in the testicles of animals under a fat diet. To investigate this, we took advantage of the non-obese hypercholesterolemia (HC) model in New Zealand rabbits that displays poor sperm and seminal quality. The testicular expression of SREBP isoform 2 (SREBP2) and its target molecules 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) and low-density lipoprotein receptor (LDLR) were studied under acute (6 months) and chronic (more than 12 months) fat intake by RT-PCR, western blot and immunofluorescence. Our findings showed that fat consumption promoted down-regulation of the SREBP2 pathway in the testicle at 6 months, but upregulation after a chronic period. This was consistent with load of testicular cholesterol, assessed by filipin staining. In conclusion, the intracellular pathway that regulates cholesterol levels in the testicle is sensitive to dietary fats, and behaves differently depending on the duration of consumption: it has a short-term protective effect, but became deregulated in the long term, ultimately leading to a detrimental situation. These results will contribute to the understanding of the basic mechanisms of the effect of fat consumption in humans with idiopathic infertility.


Asunto(s)
Colesterol/metabolismo , Dieta Alta en Grasa , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Testículo/metabolismo , Animales , Infertilidad Masculina/metabolismo , Masculino , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Semen
3.
PLoS One ; 13(8): e0202748, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30138421

RESUMEN

High-fat diet is associated with hypercholesterolemia and seminal alterations in White New Zealand rabbits. We have previously reported disorders in the development of the manchette-acrosome complex during spermiogenesis and decreased testicular efficiency in hypercholesterolemic rabbits. On the other hand, olive oil incorporated into the diet improves cholesterolemia and semen parameters affected in hypercholesterolemic rabbits. In this paper, we report the recovery-with the addition of olive oil to diet-from the sub-cellular mechanisms involved in the shaping of the sperm cell and testicular efficiency altered in hypercholesterolemic rabbits. Using morphological (structural, ultra-structural and immuno-fluorescence techniques) and cell biology techniques, a reorganization of the manchette and related structures was observed when olive oil was added to the high-fat diet. Specifically, actin filaments, microtubules and lipid rafts-abnormally distributed in hypercholesterolemic rabbits-were recovered with dietary olive oil supplementation. The causes of the decline in sperm count were studied in the previous report and here in more detail. These were attributed to the decrease in the efficiency index and also to the increase in the apoptotic percentage in testis from animals under the high-fat diet. Surprisingly, the addition of olive oil to the diet avoided the sub-cellular, efficiency and apoptosis changes observed in hypercholesterolemic rabbits. This paper reports the positive effects of the olive oil addition to the diet in the recovery of testicular efficiency and normal sperm shaping, mechanisms altered by hypercholesterolemia.


Asunto(s)
Acrosoma/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Hipercolesterolemia/tratamiento farmacológico , Aceite de Oliva/administración & dosificación , Enfermedades Testiculares/prevención & control , Acrosoma/patología , Animales , Modelos Animales de Enfermedad , Hipercolesterolemia/inducido químicamente , Hipercolesterolemia/complicaciones , Infertilidad Masculina/etiología , Infertilidad Masculina/prevención & control , Masculino , Microdominios de Membrana/efectos de los fármacos , Aceite de Oliva/farmacología , Conejos , Recuento de Espermatozoides , Espermatogénesis/efectos de los fármacos , Enfermedades Testiculares/etiología , Testículo
4.
PLoS One ; 12(2): e0172994, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28241054

RESUMEN

Hypercholesterolemia is a marker for several adult chronic diseases. Recently we demonstrated that sub/infertility is also associated to Hypercholesterolemia in rabbits. Seminal alterations included: abnormal sperm morphology, decreased sperm number and declined percentage of motile sperm, among others. In this work, our objective was to evaluate the effects of hypercholesterolemia on testicular efficiency and spermiogenesis, as the latter are directly related to sperm number and morphology respectively. Tubular efficiency was determined by comparing total number of spermatogenic cells with each cell type within the proliferation/differentiation compartments. We found lower testicular efficiency related to both a decrease in spermatogonial cells and an increase in germ cell apoptosis in hypercholesterolemic rabbits. On the other hand, spermiogenesis-the last step of spermatogenesis involved in sperm shaping-was detaily analyzed, particularly the acrosome-nucleus-manchette complex. The manchette is a microtubular-based temporary structure responsible in sperm cell elongation. We analyzed the contribution of actin filaments and raft microdomains in the arrangement of the manchette. Under fluorescence microscopy, spermatocyte to sperm cell development was followed in cells isolated from V to VIII tubular stages. In cells from hypercholesterolemic rabbits, abnormal development of acrosome, nucleus and inaccurate tail implantation were associated with actin-alpha-tubulin-GM1 sphingolipid altered distribution. Morphological alterations were also observed at electron microscopy. We demonstrated for the first time that GM1-enriched microdomains together with actin filaments and microtubules are involved in allowing the correct anchoring of the manchette complex. In conclusion, cholesterol enriched diets promote male fertility alterations by affecting critical steps in sperm development: spermatogenesis and spermiogenesis. It was also demonstrated that hypercholesterolemic rabbit model is a useful tool to study serum cholesterol increment linked to sub/infertility.


Asunto(s)
Acrosoma/patología , Hipercolesterolemia/fisiopatología , Túbulos Seminíferos/fisiopatología , Espermatogénesis , Espermatozoides/patología , Citoesqueleto de Actina/metabolismo , Animales , Apoptosis , Colesterol/sangre , Citoesqueleto/metabolismo , Gangliósido G(M1)/química , Células Germinativas/patología , Hipercolesterolemia/complicaciones , Infertilidad Masculina/complicaciones , Infertilidad Masculina/fisiopatología , Masculino , Microdominios de Membrana/química , Microscopía Fluorescente , Microtúbulos/metabolismo , Modelos Animales , Conejos , Cola del Espermatozoide/metabolismo , Espermátides/patología , Espermatocitos/citología , Testículo/fisiología , Tubulina (Proteína)/metabolismo
5.
PLoS One ; 8(1): e52386, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326331

RESUMEN

Fat increment (0.05% cholesterol, chol) in standard diet promoted a significant increase in serum and sperm membrane chol, which ultimately altered membrane-coupled sperm specific functions: osmotic resistance, acrosomal reaction, and sperm capacitation in White New Zealand rabbits. These changes were also associated with a reduction in motility percentage and appearance of abnormal sperm morphology. The present study was carried out to evaluate the effect of dietary olive oil (OO, 7% v/w) administration to several male hypercholesterolemic rabbits (hypercholesterolemic rabbits, HCR) with altered fertility parameters. These HCR males were achieved by feeding normal rabbits with a high-fat diet (0.05% chol). HCR were associated with a modest non-significant increase in body weight (standard diet, 4.08±0.17 Kg, versus high-fat diet, 4.37±0.24 Kg). Hypercholesterolemic rabbits presented a marked decrease in semen volume, sperm cell count, and percentage of sperm motility, associated with a significant increase in sperm cell abnormalities. Moreover, sperm capacitation measured by the characteristic phosphorylated protein pattern in and induced acrosomal reaction were also altered suggesting sperm dysfunction. However, the administration of OO (for 16 weeks) to rabbits that were fed with 50% of the high-fat diet normalized serum chol. Curiously, OO supply succeeded to attenuate the seminal and sperm alterations observed in HCR group. Administration of OO alone did not cause any significant changes in above mentioned parameters. These data suggest that OO administration to HCR male rabbits recovers the loss of semen quality and sperm functionality.


Asunto(s)
Hipercolesterolemia/prevención & control , Aceites de Plantas/farmacología , Análisis de Semen , Espermatozoides/efectos de los fármacos , Reacción Acrosómica/efectos de los fármacos , Animales , Colesterol en la Dieta/administración & dosificación , Colesterol en la Dieta/efectos adversos , Dieta Alta en Grasa/efectos adversos , Grasas Insaturadas en la Dieta/administración & dosificación , Grasas Insaturadas en la Dieta/farmacología , Electroforesis en Gel de Poliacrilamida , Hipercolesterolemia/etiología , Hipercolesterolemia/fisiopatología , Masculino , Aceite de Oliva , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Aceites de Plantas/administración & dosificación , Conejos , Capacitación Espermática/efectos de los fármacos , Recuento de Espermatozoides , Motilidad Espermática/efectos de los fármacos , Espermatozoides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA