Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1360902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605994

RESUMEN

Introduction: This paper presents the Reconfigurable Multi-Terrain Adaptive Casualty Transport Aid (RMTACTA), an innovative solution addressing the critical need for rapid and safe pre-hospital casualty transport in industrial environments. The RMTACTA, leveraging the Watt II six-bar linkage, offers enhanced adaptability through six modes of motion, overcoming the limitations of traditional stretchers and stretcher vehicles by facilitating navigation across narrow and challenging terrains. Methods: The RMTACTA's design incorporates two branching four-bar mechanisms to form a compact, reconfigurable Watt II six-bar linkage mechanism. This setup is controlled via a single remote rope, allowing for easy transition between its multiple operational modes, including stretcher, stretcher vehicle, folding, gangway-passing, obstacle-crossing, and upright modes. The mechanical design and kinematics of this innovative linkage are detailed, alongside an analysis of the optimal design and mechanical evaluation of rope control. Results: A prototype of the RMTACTA was developed, embodying the proposed mechanical and kinematic solutions. Preliminary tests were conducted to verify the prototype's feasibility and operability across different terrains, demonstrating its capability to safely and efficiently transport casualties. Discussion: The development of the proposed Reconfigurable Multi-Terrain Adaptive Casualty Transport Aid (RMTACTA) introduces a novel perspective on the design of emergency medical transport robots and the enhancement of casualty evacuation strategies. Its innovative application of the Watt II six-bar linkage mechanism not only showcases the RMTACTA's versatility across varied terrains but also illuminates its potential utility in critical scenarios such as earthquake relief, maritime rescue, and battlefield medical support.

2.
PLoS One ; 18(5): e0282800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37186605

RESUMEN

This paper proposes the conceptual design method for a hybrid-actuated lower limb exoskeleton based on energy consumption simulation. Firstly, the human-machine coupling model is established in OpenSim based on the proposed three passive assistance schemes. On this basis, the method of simulating muscle driving is used to find out the scheme that can reduce the metabolic rate the most with 3 passive springs models. Then, an active-passive cooperative control strategy is designed based on the finite state machine to coordinate the operation of the power mechanism and the passive energy storage structure and improve the mobility of the wearer. In the end, a simulation experiment based on the human-machine coupled model with the addition of active actuation is proceeded to evaluate its assistance performance according to reducing metabolic rate. The results show that the average metabolic cost decreased by 7.2% with both spring and motor. The combination of passive energy storage structures with active actuators to help the wearer overcome the additional consumption of energy storage can further reduce the body's metabolic rate. The proposed conceptual design method can also be utilized to implement the rapid design of a hybrid-actuated lower limb exoskeleton.


Asunto(s)
Dispositivo Exoesqueleto , Humanos , Fenómenos Biomecánicos/fisiología , Caminata/fisiología , Extremidad Inferior , Músculo Esquelético/fisiología
3.
Technol Health Care ; 30(5): 1167-1182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342067

RESUMEN

BACKGROUND: Upper-limb rehabilitation robots have become an important piece of equipment in stroke rehabilitation. The design of exoskeleton mechanisms plays a key role to improve human-robot interface in the upper-limb movements under passive and active rehabilitation training. OBJECTIVE: This paper proposes a novel of the 7-DOF (RR-RR-PRR) under-actuated exoskeleton mechanism based on the characteristics of the upper-limb movements in both of active and passive training. This aim of the proposed work is to improve human-robot interface in rehabilitation training with robots. METHODS: Firstly, the characteristics of active and passive movement training are analyzed depending on the human upper-limb model. Then, a novel 7-DOF (RR-RR-PRR) exoskeleton mechanism is proposed based on the analyzed characteristics. After that, kinematical performances of the proposed exoskeleton are analyzed on the workspace, manipulability and manipulability ellipsoid by compared with the common exoskeleton configuration of the 7 DOFs (RRR-R-PRR) mechanism. In the end, the prototype is manufactured and tested by undergoing the experiments of single-joint passive movement training and multi-joint active movement training. The human-robot interface of the proposed exoskeleton is demonstrated by root mean square error, Pearson correlation coefficient, and the time-delay difference. RESULTS: The results of the kinematical performance show that the effective workspace and the flexibility of the exoskeleton with the proposed configuration are increased by 10.44% and 1.7%. In the single-joint passive movement training experiment, the root mean square errors are 6.986, 7.568, 5.846, and Pearson correlation coefficients are 0.989, 0.984, 0.988 at the shoulder joint and the elbow joint, respectively. The time-delay differences are not beyond 3.1%. In the multi-joint active movement training experiment, the root mean square errors are 9.312 and 7.677, and Pearson correlation coefficients are 0.906 and 0.968 at the shoulder joint and the elbow joint, respectively. The time-delay differences are not beyond 3.28%. CONCLUSIONS: The proposed 7 DOFs exoskeleton mechanism shows uniformity with that of the common exoskeleton on the same rehabilitation trajectory which is effective to improve human-robot interface under passive and active rehabilitation training.


Asunto(s)
Dispositivo Exoesqueleto , Robótica , Rehabilitación de Accidente Cerebrovascular , Humanos , Movimiento , Rango del Movimiento Articular , Rehabilitación de Accidente Cerebrovascular/métodos , Extremidad Superior
4.
NeuroRehabilitation ; 50(4): 367-390, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147568

RESUMEN

BACKGROUND: As an emerging exoskeleton robot technology, flexible lower limb exoskeleton (FLLE) integrates flexible drive and wearable mechanism, effectively solving many problems of traditional rigid lower limb exoskeleton (RLLE) such as higher quality, poorer compliance and relatively poor portability, and has become one of the important development directions in the field of active rehabilitation. OBJECTIVE: This review focused on the development and innovation process in the field of FLLE in the past decade. METHOD: Related literature published from 2010 to 2021 were searched in EI, IEEE Xplore, PubMed and Web of Science databases. Seventy target research articles were further screened and sorted through inclusion and exclusion criteria. RESULTS: FLLE is classified according to different driving modes, and the advantages and disadvantages of passive flexible lower limb exoskeletons and active flexible lower limb exoskeletons are comprehensively summarized. CONCLUSION: At present, FLLE's research is mainly based on cable drive, bionic pneumatic muscles followed and matured, and new exoskeleton designs based on smart material innovations also trend to diversify. In the future, the development direction of FLLE will be lightweight and drive compliance, and the multi-mode sensory feedback control theory, motion intention recognition theory and human-machine interaction theory will be combined to reduce the metabolic energy consumption of walking.


Asunto(s)
Dispositivo Exoesqueleto , Humanos , Extremidad Inferior/fisiología , Movimiento (Física) , Caminata/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA