Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biophys Rev ; 15(5): 1233-1256, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37974999

RESUMEN

Adhesive molecular bonds between blood cells are essential for thrombosis and hemostasis as they provide means for platelet adhesion, aggregation, and signaling in flowing blood. According to the nowadays conventional definition, a "catch" bond is a type of non-covalent bio-molecular bridge, whose dissociation lifetime counter-intuitively increases with applied tensile force. Following recent experimental findings, such receptor-ligand protein bonds are vital to the blood cells involved in the prevention of bleeding (hemostatic response) and infection (immunity). In this review, we examine the up-to-date experimental discoveries and theoretical insights about catch bonds between the blood cells, their biomechanical principles at the molecular level, and their role in platelet thrombosis and hemostasis.

2.
Biochemistry (Mosc) ; 88(4): 481-490, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37080934

RESUMEN

Neuroinflammation plays an important role in epileptogenesis, however, most studies are performed using pharmacological models of epilepsy, while there are only few data available for non-invasive, including genetic, models. The levels of a number of pro-inflammatory cytokines were examined in the Krushinsky-Molodkina (KM) rat strain with high audiogenic epilepsy (AE) proneness (intense tonic seizure fit in response to loud sound) and in the control strain "0" (not predisposed to AE) using multiplex immunofluorescence magnetic assay (MILLIPLEX map Kit). Cytokine levels were determined in the dorsal striatum tissue and in the brain stem. Background levels of IL-1ß, IL-6, and TNF-α in the dorsal striatum of the KM rats were significantly lower than in the rats "0" (by 32.31, 27.84, and 38.87%, respectively, p < 0.05, 0.05, and 0.01), whereas no inter-strain differences in the levels of these metabolites were detected in the brain stem in the "background" state. Four hours after sound exposure, the TNF-α level in the dorsal striatum of the KM rats was significantly lower (by 38.34%, p < 0.01) than in the "0" rats. In the KM rats, the dorsal striatal levels of IL-1ß and IL-6 were significantly higher after the sound exposure and subsequent seizure fit, compared to the background (35.29 and 50.21% increase, p < 0.05, 0.01, respectively). In the background state the IL-2 level in the KM rats was not detected, whereas after audiogenic seizures its level was 14.01 pg/ml (significant difference, p < 0.01). In the KM rats the brain stem levels of IL-1ß and TNF-α after audiogenic seizures were significantly lower than in the background (13.23 and 23.44% decrease, respectively, p < 0.05). In the rats of the "0" strain, the levels of cytokines in the dorsal striatum after the action of sound (which did not induce AE seizures) were not different from those of the background, while in the brain stem of the "0" strain the levels of IL-1ß were lower than in the background (40.28%, p < 0.01). Thus, the differences between the background levels of cytokines and those after the action of sound were different in the rats with different proneness to AE. These data suggest involvement of the analyzed cytokines in pathophysiology of the seizure state, namely in AE seizures.


Asunto(s)
Epilepsia Refleja , Humanos , Epilepsia Refleja/complicaciones , Epilepsia Refleja/genética , Citocinas , Factor de Necrosis Tumoral alfa , Enfermedades Neuroinflamatorias , Interleucina-6 , Convulsiones/metabolismo
3.
Molecules ; 27(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36500339

RESUMEN

Selenium (Se) biofortification of aromatic plants is a promising strategy to produce valuable functional food with high biological activity and enhanced essential oil yield. The experiment carried out in 2021 and 2022 on A. annua treated with sodium selenate or nano-Se sprayed on foliar apparatus demonstrated a significant increase in photosynthetic pigments, pectin, waxes, macro- and microelements and a decrease in malonic dialdehyde (MDA) accumulation. Contrary to literature reports, neither selenate nor nano-Se showed a beneficial effect on essential oil accumulation; the oil yield did not differ between the selenate treated and control plants but was halved by the nano-Se application. Extremely high variations in the number of essential oil components, as well as in the eucalyptol, artemisia ketone, camphor and germacrene D ratio in the 2021 and 2022 experiments were recorded. The analysis of the 2016-2022 data for oil yield and composition in the control plants revealed a direct correlation between the number of components and of solar flares, and a negative correlation between oil yield and the percentage of spotless days. Both control plants and plants fortified with selenium showed higher levels of germacrene D and lower levels of artemisia ketone in 2022, characterized by more remarkable solar activity compared to 2021. Nano-Se supply resulted in the highest percentage of germacrene D accumulation. The results of the present research highlight the importance of the solar activity effect on the essential oil yield and quality of aromatic plants.


Asunto(s)
Artemisia annua , Aceites Volátiles , Selenio , Ácido Selénico/farmacología , Selenio/farmacología , Selenio/análisis , Aceites Volátiles/farmacología , Aceites Volátiles/análisis , Hojas de la Planta/química
4.
Biomedicines ; 10(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36428502

RESUMEN

Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.

5.
Biomedicines ; 9(11)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34829870

RESUMEN

The review presents data which provides evidence for the internal relationship between the stages of rodent audiogenic seizures and post-ictal catalepsy with the general pattern of animal reaction to the dangerous stimuli and/or situation. The wild run stage of audiogenic seizure fit could be regarded as an intense panic reaction, and this view found support in numerous experimental data. The phenomenon of audiogenic epilepsy probably attracted the attention of physiologists as rodents are extremely sensitive to dangerous sound stimuli. The seizure proneness in this group shares common physiological characteristics and depends on animal genotype. This concept could be the new platform for the study of epileptogenesis mechanisms.

6.
Front Mol Neurosci ; 14: 738930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803604

RESUMEN

Audiogenic epilepsy (AE), inherent to several rodent strains is widely studied as a model of generalized convulsive epilepsy. The molecular mechanisms that determine the manifestation of AE are not well understood. In the present work, we compared transcriptomes from the corpora quadrigemina in the midbrain zone, which are crucial for AE development, to identify genes associated with the AE phenotype. Three rat strains without sound exposure were compared: Krushinsky-Molodkina (KM) strain (100% AE-prone); Wistar outbred rat strain (non-AE prone) and "0" strain (partially AE-prone), selected from F2 KM × Wistar hybrids for their lack of AE. The findings showed that the KM strain gene expression profile exhibited a number of characteristics that differed from those of the Wistar and "0" strain profiles. In particular, the KM rats showed increased expression of a number of genes involved in the positive regulation of the MAPK signaling cascade and genes involved in the positive regulation of apoptotic processes. Another characteristic of the KM strain which differed from that of the Wistar and "0" rats was a multi-fold increase in the expression level of the Ttr gene and a significant decrease in the expression of the Msh3 gene. Decreased expression of a number of oxidative phosphorylation-related genes and a few other genes was also identified in the KM strain. Our data confirm the complex multigenic nature of AE inheritance in rodents. A comparison with data obtained from other independently selected AE-prone rodent strains suggests some common causes for the formation of the audiogenic phenotype.

7.
Epilepsy Behav ; 68: 95-102, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28135595

RESUMEN

BACKGROUND: Anxiety and depression are the most frequent comorbidities of different types of convulsive and non-convulsive epilepsies. Increased anxiety and depression-like phenotype have been described in the genetic absence epilepsy models as well as in models of limbic epilepsy and acquired seizure models, suggesting a neurobiological connection. However, whether anxiety and/or depression are comorbid to audiogenic epilepsy remains unclear. The aim of this study was to investigate whether anxiety or depression-like behavior can be found in rat strains with different susceptibility to audiogenic seizures (AS) and whether chronic fluoxetine treatment affects this co-morbidity. METHODS: Behavior in the elevated plus-maze and the forced swimming test was studied in four strains: Wistar rats non-susceptible to AS; Krushinsky-Molodkina (KM) strain, selectively bred for AS propensity from outbred Wistar rats; and a selection lines bred for maximal AS expression (strain "4") and for a lack of AS (strain "0") from KM×Wistar F2 hybrids. Effects of chronic antidepressant treatment on AS and behavior were also evaluated. RESULTS: Anxiety and depression levels were higher in KM rats (with AS) compared with Wistar rats (without AS), indicating the comorbidity with AS. However, in strains "4" and "0" with contrasting AS expression, but with a genetic background close to KM rats, anxiety and depression were not as divergent as in KMs versus Wistars. Fluoxetine treatment exerted an antidepressant effect in all rat strains irrespective of its effect on AS. CONCLUSIONS: Genetic background contributes substantively to the co-morbidity of anxiety and depression with AS propensity.


Asunto(s)
Antidepresivos/uso terapéutico , Ansiedad/genética , Depresión/genética , Epilepsia Refleja/genética , Fluoxetina/uso terapéutico , Antecedentes Genéticos , Convulsiones/genética , Animales , Ansiedad/complicaciones , Depresión/complicaciones , Modelos Animales de Enfermedad , Epilepsia Refleja/complicaciones , Masculino , Ratas , Ratas Wistar , Convulsiones/complicaciones
8.
J Bioenerg Biomembr ; 49(2): 149-158, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28070860

RESUMEN

The role of brain and liver mitochondria at epileptic seizure was studied on Krushinsky-Molodkina (KM) rats which respond to sound with an intensive epileptic seizure (audiogenic epilepsy). We didn't find significant changes in respiration rats of brain and liver mitochondria of KM and control rats; however the efficiency of АТР synthesis in the KM rat mitochondria was 10% lower. In rats with audiogenic epilepsy the concentration of oxidative stress marker malondialdehyde in mitochondria of the brain (but not liver) was 2-fold higher than that in the control rats. The rate of H2O2 generation in brain mitochondria of КМ rats was twofold higher than in the control animals when using NAD-dependent substrates. This difference was less pronounced in liver mitochondria. In KM rats, the activity of mitochondrial ATP-dependent potassium channel was lower than in liver mitochondria of control rats. The comparative study of the mitochondria ability to retain calcium ions revealed that in the case of using the complex I and complex II substrates, permeability transition pore is easier to trigger in brain and liver mitochondria of KM and КМs rats than in the control ones. The role of the changes in the energetic, oxidative, and ionic exchange in the mechanism of audiogenic epilepsy generation in rats and the possible correction of the epilepsy seizures are discussed.


Asunto(s)
Encéfalo/metabolismo , Epilepsia Refleja/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Calcio/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Estrés Oxidativo , Ratas Endogámicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA