Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 16(5): 3051-7, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27104293

RESUMEN

Here we report on the heat-induced solid-state replacement of GaAs by Au in nanowires. Such replacement of semiconductor nanowires by metals is envisioned as a method to achieve well-defined junctions within nanowires. To better understand the mechanisms and dynamics that govern the replacement reaction, we performed in situ heating studies using high-resolution scanning transmission electron microscopy. The dynamic evolution of the phase boundary was investigated, as well as the crystal structure and orientation of the different phases at reaction temperatures. In general, the replacement proceeds one GaAs(111) bilayer at a time, and no fixed epitaxial relation could be found between the two phases. The relative orientation of the phases affects the replacement dynamics and can induce growth twins in the Au nanowire phase. In the case of a limited Au supply, the metal phase can also become liquid.

2.
Nano Lett ; 16(6): 3524-32, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27124605

RESUMEN

The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.

3.
Nano Lett ; 14(11): 6336-41, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25340541

RESUMEN

Heterogeneous nanoparticle catalyst development relies on an understanding of their structure-property relationships, ideally at atomic resolution and in three-dimensions. Current transmission electron microscopy techniques such as discrete tomography can provide this but require multiple images of each nanoparticle and are incompatible with samples that change under electron irradiation or with surveying large numbers of particles to gain significant statistics. Here, we make use of recent advances in quantitative dark-field scanning transmission electron microscopy to count the number atoms in each atomic column of a single image from a platinum nanoparticle. These atom-counts, along with the prior knowledge of the face-centered cubic geometry, are used to create atomistic models. An energy minimization is then used to relax the nanoparticle's 3D structure. This rapid approach enables high-throughput statistical studies or the analysis of dynamic processes such as facet-restructuring or particle damage.

4.
Nano Lett ; 12(9): 4570-6, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22889019

RESUMEN

By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.


Asunto(s)
Arsenicales/química , Cristalización/métodos , Galio/química , Grafito/química , Nanotubos/química , Nanotubos/ultraestructura , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA