Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Control Release ; 369: 231-250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479444

RESUMEN

Inhalation therapy treating severe infectious disease is among the more complex and emerging topics in controlled drug release. Micron-sized carriers are needed to deposit drugs into the lower airways, while nano-sized carriers are of preference for cell targeting. Here, we present a novel and versatile strategy using micron-sized spherical particles with an excellent aerodynamic profile that dissolve in the lung fluid to ultimately generate nanoparticles enabling to enhance both extra- and intra-cellular drug delivery (i.e., dual micro-nano inhalation strategy). The spherical particles are synthesised through the condensation of nano-sized amorphous silicon dioxide resulting in high surface area, disordered mesoporous silica particles (MSPs) with monodispersed size of 2.43 µm. Clofazimine (CLZ), a drug shown to be effective against multidrug-resistant tuberculosis, was encapsulated in the MSPs obtaining a dry powder formulation with high respirable fraction (F.P.F. <5 µm of 50%) without the need of additional excipients. DSC, XRPD, and Nitrogen adsorption-desorption indicate that the drug was fully amorphous when confined in the nano-sized pores (9-10 nm) of the MSPs (shelf-life of 20 months at 4 °C). Once deposited in the lung, the CLZ-MSPs exhibited a dual action. Firstly, the nanoconfinement within the MSPs enabled a drastic dissolution enhancement of CLZ in simulated lung fluid (i.e., 16-fold higher than the free drug), increasing mycobacterial killing than CLZ alone (p = 0.0262) and reaching concentrations above the minimum bactericidal concentration (MBC) against biofilms of M. tuberculosis (i.e., targeting extracellular bacteria). The released CLZ permeated but was highly retained in a Calu-3 respiratory epithelium model, suggesting a high local drug concentration within the lung tissue minimizing risk for systemic side effects. Secondly, the micron-sized drug carriers spontaneously dissolve in simulated lung fluid into nano-sized drug carriers (shown by Nano-FTIR), delivering high CLZ cargo inside macrophages and drastically decreasing the mycobacterial burden inside macrophages (i.e., targeting intracellular bacteria). Safety studies showed neither measurable toxicity on macrophages nor Calu-3 cells, nor impaired epithelial integrity. The dissolved MSPs also did not show haemolytic effect on human erythrocytes. In a nutshell, this study presents a low-cost, stable and non-invasive dried powder formulation based on a dual micro-nano carrier to efficiently deliver drug to the lungs overcoming technological and practical challenges for global healthcare.


Asunto(s)
Antituberculosos , Clofazimina , Portadores de Fármacos , Pulmón , Nanopartículas , Administración por Inhalación , Porosidad , Antituberculosos/administración & dosificación , Antituberculosos/farmacocinética , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/uso terapéutico , Portadores de Fármacos/química , Nanopartículas/química , Nanopartículas/administración & dosificación , Humanos , Pulmón/metabolismo , Clofazimina/administración & dosificación , Clofazimina/farmacocinética , Clofazimina/uso terapéutico , Dióxido de Silicio/química , Dióxido de Silicio/administración & dosificación , Sistemas de Liberación de Medicamentos , Animales , Liberación de Fármacos , Tamaño de la Partícula , Tuberculosis/tratamiento farmacológico , Mycobacterium tuberculosis/efectos de los fármacos , Ratones
2.
Carbohydr Polym ; 291: 119542, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698372

RESUMEN

Characterization and tuning of the porosity of amorphous starch materials are important for many applications, including controlled release of encapsulated proteins. The porosities of these materials in dry and hydrated states can have different physicochemical origins and properties. Here, porosities of dry cross-linked starch microspheres and their hydration-induced transformations were characterized by small angle X-ray scattering, scanning electron and optical microscopies, thermogravimetric analysis, sorption calorimetry, nitrogen sorption, and helium-pycnometry. The analyses revealed that dry microspheres consist of porous cores with pore diameters below 100 nm and shells which appeared to be denser but contained wider pores (100-300 nm). The outer crust of the microspheres shell is non-porous, which restricts diffusion of nitrogen, water, and ethanol. Partial hydration triggered an irreversible collapse of dry porosity at 12 wt% water. Further hydration resulted in interfacial changes and promoted wet porosity, related to characteristic distances between polymer chains.


Asunto(s)
Deshidratación , Almidón , Humanos , Microesferas , Nitrógeno , Porosidad , Almidón/química , Agua/química
3.
Int J Pharm ; 602: 120609, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33901597

RESUMEN

When applied to skin, particulate matter has been shown to accumulate in hair follicles. In addition to follicles, the skin topography also incorporates trench-like furrows where particles potentially can accumulate; however, the furrows have not been as thoroughly investigated in a drug delivery perspective. Depending on body site, the combined follicle orifices cover up to 10% of the skin surface, while furrows can easily cover 20%, reaching depths exceeding 25 µm. Hence, porous particles of appropriate size and porosity could serve as carriers for drugs to be released in the follicles prior to local or systemic absorption. In this paper, we combine multiphoton microscopy, scanning electron microscopy, and Franz cell diffusion technology to investigate ex-vivo skin accumulation of mesoporous silica particles (average size of 400-600 nm, 2, and 7 µm, respectively), and the potential of which as vehicles for topical delivery of the broad-spectrum antibiotic metronidazole. We detected smaller particles (400-600 nm) in furrows at depths of about 25 µm, also after rinsing, while larger particles (7 µm) where located more superficially on the skin. This implies that appropriately sized porous particles may serve as valuable excipients in optimizing bioavailability of topical formulations. This work highlights the potential of skin furrows for topical drug delivery.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Disponibilidad Biológica , Biofarmacia , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos , Piel/metabolismo
4.
Drug Deliv ; 26(1): 831-840, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31401887

RESUMEN

Formulations for nasal drug delivery often rely on water sorption to adhere to the mucosa, which also causes a higher water gradient over the tissue and subsequent dehydration. The primary aim of this study was therefore to evaluate mucosal response to dehydration and resolve the hypothesis that mucoadhesion achieved through water sorption could also be a constraint for drug absorption via the nasal route. The effect of altering water activity of the vehicle on Xylometazoline HCl and 51Cr-EDTA uptake was studied separately ex vivo using flow through diffusion cells and excised porcine mucosa. We have shown that a modest increase in the water gradient over mucosa induces a substantial decrease in drug uptake for both Xylometazoline HCl and 51Cr-EDTA. A similar result was obtained when comparing two different vehicles on the market; Nasoferm® (Nordic Drugs, Sweden) and BLOX4® (Bioglan, Sweden). Mucoadhesion based on water sorption can slow down drug uptake in the nasal cavity. However, a clinical study is required to determine whether prolonged duration of the vehicle in situ or preventing dehydration of the mucosa is the most important factor for improving bioavailability.


Asunto(s)
Transporte Biológico/fisiología , Deshidratación/metabolismo , Deshidratación/fisiopatología , Mucosa Nasal/metabolismo , Preparaciones Farmacéuticas/metabolismo , Administración Intranasal/métodos , Animales , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos/métodos , Excipientes/química , Porcinos
5.
Carbohydr Polym ; 172: 175-183, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28606523

RESUMEN

Physical and chemical (crosslinked with genipin) hydrogels based on chitosan and dextran sulfate were developed and characterized as novel bio-materials suitable for probiotic encapsulation. The swelling of the hydrogels was dependent on the composition and weakly influenced by the pH of the media. The morphology analysis supports the swelling data showing distinct changes in microstructure depending on the composition. The viability and culturability tests showed approx. 3.6 log CFU/mL decrease of cells (L. acidophilus as model) incorporated into chemical hydrogels when compared to the number of viable native cells. However, the live/dead viability assay evidenced that a considerable amount of viable cells were still entrapped in the hydrogel network and therefore the viability is most likely underestimated. Overall, the developed systems are robust and their structure, rheology and swelling properties can be tuned by changing the blend ratio, thus constituting appealing bio-matrices for cell encapsulation.


Asunto(s)
Quitosano/química , Sulfato de Dextran/química , Portadores de Fármacos/química , Hidrogeles/química , Probióticos/administración & dosificación
6.
J Colloid Interface Sci ; 497: 242-248, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28285052

RESUMEN

The potential of a lactylate (the sodium caproyl lactylate or C10 lactylate), a typical food grade emulsifier, as an anionic environmental friendly anti-fungal additive was tested in growth medium and formulated in a protective coating for exterior wood. Different laboratory growth tests on the blue stain fungus Aureobasidium pullulans were performed and its interactions on a model fungal cell membrane were studied. Promising short term anti-fungal effects in growth tests were observed, although significant but less dramatic effects took place in coating test on wood panels. Scanning electron microscope analysis shows clear differences in the amount of fungal slime on the mycelium of Aureobasidium pullulans when the fungus was exposed of C10 lactylate. This could indicate an effect on the pullulan and melanin production by the fungus. Moreover, the interaction studies on model fungal cell membranes show that C10 lactylate affects the phospholipid bilayer in a similar manner to other negative charged detergents.


Asunto(s)
Antifúngicos/farmacología , Ascomicetos/citología , Ascomicetos/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Ascomicetos/metabolismo , Membrana Celular/química , Detergentes/química , Detergentes/farmacología , Glucanos/biosíntesis , Melaninas/biosíntesis , Micelio/efectos de los fármacos , Fosfolípidos/química , Fosfolípidos/metabolismo , Madera/microbiología
7.
J Phys Chem B ; 119(11): 4211-9, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25719495

RESUMEN

Hyaluronan (HA) is a frequently occurring biopolymer with a large variety of functions in nature. During the past 60 years, there have been numerous reports on structural and dynamic behavior of HA in water. Nevertheless, studies covering a wider concentration range are still lacking. In this work, we use isothermal scanning sorption calorimetry for the first time to investigate hydration-induced transitions in HA (sodium hyaluronate, 17 kDa). From this method, we obtain the sorption isotherm and the enthalpy and the entropy of hydration. Thermotropic events are evaluated by differential scanning calorimetry (DSC), and structure analysis is performed with X-ray scattering (SWAXS) and light and scanning electron microscopy. During isothermal hydration, HA exhibits a glass transition, followed by crystallization and subsequent dissolution of HA crystals and formation of a one-phase solution. Structural analysis reveals that the crystal may be indexed on an orthorhombic unit cell with space group P212121. Crystallization of HA was found to occur either through endothermic or exothermic processes, depending on the temperature and water content. We propose a mechanism of crystallization that explains this phenomenon based on the interplay between the hydrophobic effect and strengthening of hydrogen bonds during formation of crystals. The combined results were used to construct a binary phase diagram for the HA-water system.


Asunto(s)
Entropía , Ácido Hialurónico/química , Agua/química
8.
J Phys Chem B ; 115(49): 14450-61, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22007791

RESUMEN

A model membrane system based on lipid lyotropic phases confined inside the pores of a well-defined scaffold membrane, thereby forming a double-porous membrane structure, is described. The model membrane system is characterized with regard to lipid structure, lipid location, and phase transitions, using small-angle X-ray scattering, differential scanning calorimetry, and confocal microscopy. The system enables studies of transport across oriented lipid bilayers as well as of lipids in confinement. The lipids are shown to be located inside the membrane pores, and the effect of confinement on lipid structure is shown to be small, although dependent on the surface properties of the scaffold membrane. For transport studies, Franz diffusion cells and different types of drugs/dyes are used, and the transport studies are complemented with theoretical modeling. Lipids investigated include monoolein, dioleoyl phosphatidylcholine, dimyristoyl phosphatidylcholine, and E. coli total lipid extract. In the case of monoolein, the lipid structure can be changed from a bicontinuous cubic Ia3d phase to a liquid crystalline lamellar phase, by controlling the osmotic pressure of the surrounding solution through addition of water-soluble polymer. The osmotic pressure can thereby be used as a switch, changing the permeability of the lipid phase up to 100-fold, depending on the properties of the diffusing substance. The large effect of changing the structure implies an alignment of the lamellar phase inside the pores.


Asunto(s)
Membrana Dobles de Lípidos/química , Rastreo Diferencial de Calorimetría , Escherichia coli/química , Glicéridos/química , Permeabilidad , Fosfatidilcolinas/química , Porosidad , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA