Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8190, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294176

RESUMEN

Antarctic Bottom Water (AABW), which supplies the lower limb of the thermohaline circulation, originates from dense shelf water (DSW) forming in Antarctic polynyas. Here, combining a long mooring record of DSW measurements with numerical simulations and satellite data, we show that significant correlation exists between interannual variability of DSW production in the Ross Sea polynyas, where DSW contributes between 20-40% of the global AABW production, and the Southern Annular Mode (SAM). The correlation is largest when the Amundsen Sea Low (ASL) is weakened and shifted east of the Ross Sea. During positive SAM phases, enhanced offshore winds and lower air temperatures over the western Ross Sea increase sea ice production and promote DSW formation, with the opposite response during negative SAM phases. These processes ultimately modulate AABW thickness in the open ocean. A projected positive shift of the SAM and eastward displacement of the ASL thus has implications for the future of DSW and AABW formation.

2.
Glob Chang Biol ; 30(8): e17467, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39168490

RESUMEN

Antarctica's unique marine ecosystems are threatened by the arrival of non-native marine species on rafting ocean objects. The harsh environmental conditions in Antarctica prevent the establishment of many such species, but warming around the continent and the opening up of ice-free regions may already be reducing these barriers. Although recent genomic work has revealed that rafts-potentially carrying diverse coastal passengers-reach Antarctica from sub-Antarctic islands, Antarctica's vulnerability to incursions from Southern Hemisphere continents remains unknown. Here we use 0.1° global ocean model simulations to explore whether drift connections exist between more northern, temperate landmasses and the Antarctic coastline. We show that passively floating objects can drift to Antarctica not only from sub-Antarctic islands, but also from continental locations north of the Subtropical Front including Australia, South Africa, South America and Zealandia. We find that the Antarctic Peninsula is the region at highest risk for non-native species introductions arriving by natural oceanic dispersal, highlighting the vulnerability of this region, which is also at risk from introductions via ship traffic and rapid warming. The widespread connections with sub-Antarctic and temperate landmasses, combined with an increasing abundance of marine anthropogenic rafting vectors, poses a growing risk to Antarctic marine ecosystems, especially as environmental conditions around Antarctica are projected to become more suitable for non-native species in the future.


Asunto(s)
Especies Introducidas , Regiones Antárticas , Ecosistema , Modelos Teóricos , Organismos Acuáticos/fisiología , Animales , Océanos y Mares
3.
Sci Adv ; 10(33): eado5107, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39141738

RESUMEN

The southwestern tropical Pacific is a key center for the Interdecadal Pacific Oscillation (IPO), which regulates global climate. This study introduces a groundbreaking 627-year coral Sr/Ca sea surface temperature reconstruction from Fiji, representing the IPO's southwestern pole. Merging this record with other Fiji and central tropical Pacific records, we reconstruct the SST gradient between the southwestern and central Pacific (SWCP), providing a reliable proxy for IPO variability from 1370 to 1997. This reconstruction reveals distinct centennial-scale temperature trends and insights into Pacific-wide climate impacts and teleconnections. Notably, the 20th century conditions, marked by simultaneous basin-scale warming and weak tropical Pacific zonal-meridional gradients, deviate from trends observed during the past six centuries. Combined with model simulations, our findings reveal that a weak SWCP gradient most markedly affects IPO-related rainfall patterns in the equatorial Pacific. Persistent synchronous western and central Pacific warming rates could lead to further drying climate across the Coral Sea region, adversely affecting Pacific Island nations.


Asunto(s)
Antozoos , Temperatura , Fiji , Antozoos/fisiología , Océano Pacífico , Animales , Calcio/metabolismo , Arrecifes de Coral , Cambio Climático
5.
Nat Commun ; 14(1): 6888, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898610

RESUMEN

The ocean absorbs >90% of anthropogenic heat in the Earth system, moderating global atmospheric warming. However, it remains unclear how this heat uptake is distributed by basin and across water masses. Here we analyze historical and recent observations to show that ocean heat uptake has accelerated dramatically since the 1990s, nearly doubling during 2010-2020 relative to 1990-2000. Of the total ocean heat uptake over the Argo era 2005-2020, about 89% can be found in global mode and intermediate water layers, spanning both hemispheres and both subtropical and subpolar mode waters. Due to anthropogenic warming, there are significant changes in the volume of these water-mass layers as they warm and freshen. After factoring out volumetric changes, the combined warming of these layers accounts for ~76% of global ocean warming. We further decompose these water-mass layers into regional water masses over the subtropical Pacific and Atlantic Oceans and in the Southern Ocean. This shows that regional mode and intermediate waters are responsible for a disproportionate fraction of total heat uptake compared to their volume, with important implications for understanding ongoing ocean warming, sea-level rise, and climate impacts.

6.
Nat Commun ; 14(1): 6387, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821438

RESUMEN

Several aspects of regional climate including near-surface temperature and precipitation are predictable on interannual to decadal time scales. Despite indications that some climate states may provide higher predictability than others, previous studies analysing decadal predictions typically sample a variety of initial conditions. Here we assess multi-year predictability conditional on the phase of the El Niño-Southern Oscillation (ENSO) at the time of prediction initialisation. We find that predictions starting with El Niño or La Niña conditions exhibit higher skill in predicting near-surface air temperature and precipitation multiple years in advance, compared to predictions initialised from neutral ENSO conditions. This holds true in idealised prediction experiments with the Community Climate System Model Version 4 and to a lesser extent also real-world predictions using the Community Earth System Model and a multi-model ensemble of hindcasts contributed to the Coupled Model Intercomparison Project Phase 6 Decadal Climate Prediction Project. This enhanced predictability following ENSO events is related to phase transitions as part of the ENSO cycle, and related global teleconnections. Our results indicate that certain initial states provide increased predictability, revealing windows of opportunity for more skillful multi-year predictions.

7.
Nature ; 615(7954): 841-847, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36991191

RESUMEN

The abyssal ocean circulation is a key component of the global meridional overturning circulation, cycling heat, carbon, oxygen and nutrients throughout the world ocean1,2. The strongest historical trend observed in the abyssal ocean is warming at high southern latitudes2-4, yet it is unclear what processes have driven this warming, and whether this warming is linked to a slowdown in the ocean's overturning circulation. Furthermore, attributing change to specific drivers is difficult owing to limited measurements, and because coupled climate models exhibit biases in the region5-7. In addition, future change remains uncertain, with the latest coordinated climate model projections not accounting for dynamic ice-sheet melt. Here we use a transient forced high-resolution coupled ocean-sea-ice model to show that under a high-emissions scenario, abyssal warming is set to accelerate over the next 30 years. We find that meltwater input around Antarctica drives a contraction of Antarctic Bottom Water (AABW), opening a pathway that allows warm Circumpolar Deep Water greater access to the continental shelf. The reduction in AABW formation results in warming and ageing of the abyssal ocean, consistent with recent measurements. In contrast, projected wind and thermal forcing has little impact on the properties, age and volume of AABW. These results highlight the critical importance of Antarctic meltwater in setting the abyssal ocean overturning, with implications for global ocean biogeochemistry and climate that could last for centuries.


Asunto(s)
Congelación , Calor , Océanos y Mares , Agua de Mar , Movimientos del Agua , Regiones Antárticas , Agua de Mar/análisis , Agua de Mar/química , Aceleración , Incertidumbre , Cambio Climático
8.
Nat Commun ; 13(1): 4921, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071053

RESUMEN

Since the 1970s, the ocean has absorbed almost all of the additional energy in the Earth system due to greenhouse warming. However, sparse observations limit our knowledge of where ocean heat uptake (OHU) has occurred and where this heat is stored today. Here, we equilibrate a reanalysis-forced ocean-sea ice model, using a spin-up that improves on earlier approaches, to investigate recent OHU trends basin-by-basin and associated separately with surface wind trends, thermodynamic properties (temperature, humidity and radiation) or both. Wind and thermodynamic changes each explain ~ 50% of global OHU, while Southern Ocean forcing trends can account for almost all of the global OHU. This OHU is enabled by cool sea surface temperatures and sensible heat gain when atmospheric thermodynamic properties are held fixed, while downward longwave radiation dominates when winds are fixed. These results address long-standing limitations in multidecadal ocean-sea ice model simulations to reconcile estimates of OHU, transport and storage.

9.
BMC Bioinformatics ; 23(1): 391, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167486

RESUMEN

In this paper we introduce a new representation for the multistationarity region of a reaction network, using polynomial superlevel sets. The advantages of using this polynomial superlevel set representation over the already existing representations (cylindrical algebraic decompositions, numeric sampling, rectangular divisions) is discussed, and algorithms to compute this new representation are provided. The results are given for the general mathematical formalism of a parametric system of equations and so may be applied to other application domains.

10.
Nature ; 608(7922): 275-286, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948707

RESUMEN

The East Antarctic Ice Sheet contains the vast majority of Earth's glacier ice (about 52 metres sea-level equivalent), but is often viewed as less vulnerable to global warming than the West Antarctic or Greenland ice sheets. However, some regions of the East Antarctic Ice Sheet have lost mass over recent decades, prompting the need to re-evaluate its sensitivity to climate change. Here we review the response of the East Antarctic Ice Sheet to past warm periods, synthesize current observations of change and evaluate future projections. Some marine-based catchments that underwent notable mass loss during past warm periods are losing mass at present but most projections indicate increased accumulation across the East Antarctic Ice Sheet over the twenty-first century, keeping the ice sheet broadly in balance. Beyond 2100, high-emissions scenarios generate increased ice discharge and potentially several metres of sea-level rise within just a few centuries, but substantial mass loss could be averted if the Paris Agreement to limit warming below 2 degrees Celsius is satisfied.


Asunto(s)
Modelos Climáticos , Calentamiento Global , Cubierta de Hielo , Temperatura , Regiones Antárticas , Predicción , Calentamiento Global/historia , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XXI , Elevación del Nivel del Mar/historia , Elevación del Nivel del Mar/estadística & datos numéricos
12.
mBio ; 12(5): e0270821, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34700378

RESUMEN

The Cryptococcus gattii species complex has often been referred to as a primary pathogen due to its high infection frequency among apparently immunocompetent patients. In order to scrutinize the immune status of patients and the lineages of etiologic agents, we analyzed patient histories and the molecular types of etiologic agents from 135 global C. gattii cases. Eighty-six of 135 patients had been diagnosed as immunocompetent, although some of them had underlying medical issues, and 49 were diagnosed as immunocompromised with risk factors similar to those seen in Cryptococcus neoformans infection. We focused on the 86 apparently immunocompetent patients and were able to obtain plasma from 32 (37%) to analyze for the presence of autoantibodies against the granulocyte-macrophage colony-stimulating factor (GM-CSF) since these antibodies have been reported as a hidden risk factor for C. gattii infection. Among the 32 patients, 25 were free from any known other health issues, and 7 had various medical conditions at the time of diagnosis for cryptococcosis. Importantly, plasma from 19 (76%) of 25 patients with no recognized underlying medical condition showed the presence of GM-CSF autoantibodies, supporting this antibody as a major hidden risk factor for C. gattii infection. These data indicate that seemingly immunocompetent people with C. gattii infection warrant detailed evaluation for unrecognized immunologic risks. There was no relationship between molecular type and underlying conditions of patients. Frequency of each molecular type was related to its geographic origin exemplified by the overrepresentation of VGIV in HIV-positive (HIV+) patients due to its prevalence in Africa. IMPORTANCE The C. neoformans and C. gattii species complex causes cryptococcosis. The C. neoformans species complex is known as an opportunistic pathogen since it primarily infects immunocompromised patients. C. gattii species complex has been referred to as a primary pathogen due to its high infection frequency in apparently immunocompetent people. We analyzed 135 global cases of C. gattii infection with documented patient history. Eighty-six of 135 patients were originally diagnosed as immunocompetent and 49 as immunosuppressed with similar underlying conditions reported for C. neoformans infection. A significant number of C. gattii patients without known underlying conditions possessed autoantibodies against granulocytes-macrophage colony-stimulating factor (GM-CSF) in their plasma, supporting the presence of GM-CSF antibodies as a hidden risk factor for C. gattii infection. No relationship was found between C. gattii lineages and the underlying conditions except for overrepresentation of the molecular type VGIV among HIV+ patients due to the prevalence of VGIV in Africa.


Asunto(s)
Criptococosis/etiología , Cryptococcus gattii/patogenicidad , Infecciones Oportunistas/etiología , Infecciones Oportunistas/microbiología , África/epidemiología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Criptococosis/inmunología , Criptococosis/microbiología , Cryptococcus gattii/clasificación , Cryptococcus gattii/genética , Cryptococcus gattii/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Humanos , Inmunocompetencia , Huésped Inmunocomprometido , Infecciones Oportunistas/inmunología , Factores de Riesgo
13.
Nature ; 579(7799): 385-392, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188937

RESUMEN

The Indian Ocean Dipole (IOD) affects climate and rainfall across the world, and most severely in nations surrounding the Indian Ocean1-4. The frequency and intensity of positive IOD events increased during the twentieth century5 and may continue to intensify in a warming world6. However, confidence in predictions of future IOD change is limited by known biases in IOD models7 and the lack of information on natural IOD variability before anthropogenic climate change. Here we use precisely dated and highly resolved coral records from the eastern equatorial Indian Ocean, where the signature of IOD variability is strong and unambiguous, to produce a semi-continuous reconstruction of IOD variability that covers five centuries of the last millennium. Our reconstruction demonstrates that extreme positive IOD events were rare before 1960. However, the most extreme event on record (1997) is not unprecedented, because at least one event that was approximately 27 to 42 per cent larger occurred naturally during the seventeenth century. We further show that a persistent, tight coupling existed between the variability of the IOD and the El Niño/Southern Oscillation during the last millennium. Indo-Pacific coupling was characterized by weak interannual variability before approximately 1590, which probably altered teleconnection patterns, and by anomalously strong variability during the seventeenth century, which was associated with societal upheaval in tropical Asia. A tendency towards clustering of positive IOD events is evident in our reconstruction, which-together with the identification of extreme IOD variability and persistent tropical Indo-Pacific climate coupling-may have implications for improving seasonal and decadal predictions and managing the climate risks of future IOD variability.


Asunto(s)
Antozoos/metabolismo , Cambio Climático/estadística & datos numéricos , Animales , Conjuntos de Datos como Asunto , El Niño Oscilación del Sur , Fósiles , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Medieval , Océano Índico , Indonesia , Islas , Modelos Teóricos , Isótopos de Oxígeno , Océano Pacífico , Lluvia , Estaciones del Año , Clima Tropical
14.
Proc Natl Acad Sci U S A ; 116(21): 10270-10279, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31068473

RESUMEN

Infectious diseases caused by bacterial pathogens remain one of the most common causes of morbidity and mortality worldwide. Rapid microbiological analysis is required for prompt treatment of bacterial infections and to facilitate antibiotic stewardship. This study reports an adaptable microfluidic system for rapid pathogen classification and antimicrobial susceptibility testing (AST) at the single-cell level. By incorporating tunable microfluidic valves along with real-time optical detection, bacteria can be trapped and classified according to their physical shape and size for pathogen classification. By monitoring their growth in the presence of antibiotics at the single-cell level, antimicrobial susceptibility of the bacteria can be determined in as little as 30 minutes compared with days required for standard procedures. The microfluidic system is able to detect bacterial pathogens in urine, blood cultures, and whole blood and can analyze polymicrobial samples. We pilot a study of 25 clinical urine samples to demonstrate the clinical applicability of the microfluidic system. The platform demonstrated a sensitivity of 100% and specificity of 83.33% for pathogen classification and achieved 100% concordance for AST.


Asunto(s)
Antiinfecciosos , Microfluídica , Antibacterianos , Disbiosis , Humanos , Pruebas de Sensibilidad Microbiana
15.
Nat Commun ; 10(1): 1990, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040269

RESUMEN

Climate models generally simulate a long-term slowdown of the Pacific Walker Circulation in a warming world. However, despite increasing greenhouse forcing, there was an unprecedented intensification of the Pacific Trade Winds during 1992-2011, that co-occurred with a temporary slowdown in global surface warming. Using ensemble simulations from three different climate models starting from different initial conditions, we find a large spread in projected 20-year globally averaged surface air temperature trends that can be linked to differences in Pacific climate variability. This implies diminished predictive skill for global surface air temperature trends over decadal timescales, to a large extent due to intrinsic Pacific Ocean variability. We show, however, that this uncertainty can be considerably reduced when the initial oceanic state is known and well represented in the model. In this case, the spatial patterns of 20-year surface air temperature trends depend largely on the initial state of the Pacific Ocean.

17.
Comput Biol Med ; 105: 169-181, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30665012

RESUMEN

Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs which play a significant role in several biological processes. RNA-seq based transcriptome sequencing has been extensively used for identification of lncRNAs. However, accurate identification of lncRNAs in RNA-seq datasets is crucial for exploring their characteristic functions in the genome as most coding potential computation (CPC) tools fail to accurately identify them in transcriptomic data. Well-known CPC tools such as CPC2, lncScore, CPAT are primarily designed for prediction of lncRNAs based on the GENCODE, NONCODE and CANTATAdb databases. The prediction accuracy of these tools often drops when tested on transcriptomic datasets. This leads to higher false positive results and inaccuracy in the function annotation process. In this study, we present a novel tool, PLIT, for the identification of lncRNAs in plants RNA-seq datasets. PLIT implements a feature selection method based on L1 regularization and iterative Random Forests (iRF) classification for selection of optimal features. Based on sequence and codon-bias features, it classifies the RNA-seq derived FASTA sequences into coding or long non-coding transcripts. Using L1 regularization, 31 optimal features were obtained based on lncRNA and protein-coding transcripts from 8 plant species. The performance of the tool was evaluated on 7 plant RNA-seq datasets using 10-fold cross-validation. The analysis exhibited superior accuracy when evaluated against currently available state-of-the-art CPC tools.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Anotación de Secuencia Molecular , Plantas , ARN Largo no Codificante , ARN de Planta , Programas Informáticos , Plantas/genética , Plantas/metabolismo , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN de Planta/biosíntesis , ARN de Planta/genética
18.
J Clin Microbiol ; 57(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30541938

RESUMEN

The emergence of cell therapy programs in large academic centers has led to an increasing demand for clinical laboratories to assist with product sterility testing. Automated blood culture systems have shown promise as alternatives to the manual USP<71> compendial method, but current published data are limited by small organism test sets, particularly for molds. In 2015, failure of the Bactec FX system to detect mold contamination in two products prompted us to evaluate three test systems (compendial USP<71>, Bactec FX, and BacT/Alert Dual-T) over seven different culture combinations, using 118 challenge organisms representative of the NIH current good manufacturing practice (cGMP) environment. At <96 h and <144 h for bacterial and fungal detection, respectively, the compendial USP<71> method significantly outperformed the Bactec FX system (84.7% versus 64.4%; P = 0.0006) but not the BacT/Alert system at 32.5°C (78.8%; P = 0.3116). Extended incubation to 360 h with terminal visual inspection improved sensitivity, without a significant difference between compendial USP<71> and BacT/Alert testing (95.7% versus 89.0%; P = 0.0860); both systems were better than the Bactec FX system (71.2%; P < 0.0001 and P = 0.0003, respectively). The Bactec FX and BacT/Alert systems performed equivalently for 30 isolates derived from clinical bloodstream infections, confirming system optimization for clinical organisms rather than environmental contaminants. Paired Sabouraud dextrose agar (SDA) plates were always positive for fungi within the acceptable time frame. This study shows that the Bactec FX system is suboptimal for product sterility testing, and it provides strong data to support the use of BacT/Alert testing at 32.5°C paired with a supplemental SDA plate as an acceptable alternative to the compendial USP<71> method for product sterility testing.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Contaminación de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Técnicas Microbiológicas/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Sensibilidad y Especificidad
19.
J Clin Microbiol ; 56(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29212701

RESUMEN

The performance of the new ePlex Respiratory Pathogen (RP) panel (GenMark Diagnostics) for the simultaneous detection of 19 viruses (influenza A virus; influenza A H1 virus; influenza A 2009 H1 virus; influenza A H3 virus; influenza B virus; adenovirus; coronaviruses [HKU1, OC43, NL63, and 229E]; human rhinovirus/enterovirus; human metapneumovirus; parainfluenza viruses 1, 2, 3, and 4; and respiratory syncytial virus [RSV] [RSV subtype A and RSV subtype B]) and 2 bacteria (Mycoplasma pneumoniae and Chlamydia pneumoniae) was evaluated. Prospectively and retrospectively collected nasopharyngeal swab (NPS) specimens (n = 2,908) were evaluated by using the ePlex RP panel, with the bioMérieux/BioFire FilmArray Respiratory Panel (BioFire RP) as the comparator method. Discordance analysis was performed by using target-specific PCRs and bidirectional sequencing. The reproducibility of the assay was evaluated by using reproducibility panels comprised of 6 pathogens. The overall agreement between the ePlex RP and BioFire RP results was >95% for all targets. Positive percent agreement with the BioFire RP result for viruses ranged from 85.1% (95% confidence interval [CI], 80.2% to 88.9%) to 95.1% (95% CI, 89.0% to 97.9%), while negative percent agreement values ranged from 99.5% (95% CI, 99.1% to 99.7%) to 99.8% (95% CI, 99.5% to 99.9%). Additional testing of discordant targets (12%; 349/2,908) confirmed the results of ePlex RP for 38% (131/349) of samples tested. Reproducibility was 100% for all targets tested, with the exception of adenovirus, for which reproducibilities were 91.6% at low virus concentrations and 100% at moderate virus concentrations. The ePlex RP panel offers a new, rapid, and sensitive "sample-to-answer" multiplex panel for the detection of the most common viral and bacterial respiratory pathogens.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Nasofaringe/microbiología , Nasofaringe/virología , Reacción en Cadena de la Polimerasa , Infecciones del Sistema Respiratorio/diagnóstico , Virus/aislamiento & purificación , Pruebas Diagnósticas de Rutina , Humanos , Reproducibilidad de los Resultados , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología , Estudios Retrospectivos
20.
Sens Actuators B Chem ; 239: 1134-1143, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29515291

RESUMEN

Vertical Microbeams (VMB) are used to irradiate individual cells with low MeV energy ions. The irradiation of cells using VMBs requires cells to be removed from an incubator; this can cause physiological changes to cells because of the lower CO2 concentration, temperature and relative humidity outside of the incubator. Consequently, for experiments where cells require irradiation and observation for extended time periods, it is important to provide a controlled environment. The highly customised nature of the microscopes used on VMB systems means that there are no commercially available environmentally controlled microscope systems for VMB systems. The Automated Microbeam Observation Environment for Biological Analysis (AMOEBA) is a highly flexible modular environmental control system used to create incubator conditions on the end of a VMB. The AMOEBA takes advantage of the recent "maker" movement to create an open source control system that can be easily configured by the user to fit their control needs even beyond VMB applications. When applied to the task of controlling cell medium temperature, CO2 concentration and relative humidity on VMBs it creates a stable environment that allows cells to multiply on the end of a VMB over a period of 36 h, providing a low-cost (costing less than $2700 to build), customisable alternative to commercial time-lapse microscopy systems. AMOEBA adds the potential of VMBs to explore the long-term effects of radiation on single cells opening up new research areas for VMBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA