Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Malar J ; 23(1): 200, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943203

RESUMEN

BACKGROUND: Microscopic detection of malaria parasites is labour-intensive, time-consuming, and expertise-demanding. Moreover, the slide interpretation is highly dependent on the staining technique and the technician's expertise. Therefore, there is a growing interest in next-generation, fully- or semi-integrated microscopes that can improve slide preparation and examination. This study aimed to evaluate the clinical performance of miLab™ (Noul Inc., Republic of Korea), a fully-integrated automated microscopy device for the detection of malaria parasites in symptomatic patients at point-of-care in Sudan. METHODS: This was a prospective, case-control diagnostic accuracy study conducted in primary health care facilities in rural Khartoum, Sudan in 2020. According to the outcomes of routine on-site microscopy testing, 100 malaria-positive and 90 malaria-negative patients who presented at the health facility and were 5 years of age or older were enrolled consecutively. All consenting patients underwent miLab™ testing and received a negative or suspected result. For the primary analysis, the suspected results were regarded as positive (automated mode). For the secondary analysis, the operator reviewed the suspected results and categorized them as either negative or positive (corrected mode). Nested polymerase chain reaction (PCR) was used as the reference standard, and expert light microscopy as the comparator. RESULTS: Out of the 190 patients, malaria diagnosis was confirmed by PCR in 112 and excluded in 78. The sensitivity of miLab™ was 91.1% (95% confidence interval [CI] 84.2-95.6%) and the specificity was 66.7% (95% Cl 55.1-67.7%) in the automated mode. The specificity increased to 96.2% (95% Cl 89.6-99.2%), with operator intervention in the corrected mode. Concordance of miLab with expert microscopy was substantial (kappa 0.65 [95% CI 0.54-0.76]) in the automated mode, but almost perfect (kappa 0.97 [95% CI 0.95-0.99]) in the corrected mode. A mean difference of 0.359 was found in the Bland-Altman analysis of the agreement between expert microscopy and miLab™ for quantifying parasite counts. CONCLUSION: When used in a clinical context, miLab™ demonstrated high sensitivity but low specificity. Expert intervention was shown to be required to improve the device's specificity in its current version. miLab™ in the corrected mode performed similar to expert microscopy. Before clinical application, more refinement is needed to ensure full workflow automation and eliminate human intervention. Trial registration ClinicalTrials.gov: NCT04558515.


Asunto(s)
Malaria , Microscopía , Sistemas de Atención de Punto , Sensibilidad y Especificidad , Sudán , Microscopía/métodos , Humanos , Estudios de Casos y Controles , Estudios Prospectivos , Femenino , Masculino , Niño , Preescolar , Adulto , Adolescente , Malaria/diagnóstico , Adulto Joven , Persona de Mediana Edad
2.
Trop Med Int Health ; 28(10): 817-829, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37705047

RESUMEN

INTRODUCTION: The World Health Organization recommends regular monitoring of the efficacy of nationally recommended antimalarial drugs. We present the results of studies on the efficacy of recommended antimalarials and molecular markers of artemisinin and partner resistance in Afghanistan, Pakistan, Somalia, Sudan and Yemen. METHODS: Single-arm prospective studies were conducted to evaluate the efficacy of artesunate-sulfadoxine-pyrimethamine (ASSP) in Afghanistan and Pakistan, artemether-lumefantrine (AL) in all countries, or dihydroartemisinin-piperaquine (DP) in Sudan for the treatment of Plasmodium falciparum. The efficacy of chloroquine (CQ) and AL for the treatment of Plasmodium vivax was evaluated in Afghanistan and Somalia, respectively. Patients were treated and monitored for 28 (CQ, ASSP and AL) or 42 (DP) days. Polymerase chain reaction (PCR)-corrected cure rate and parasite positivity rate at Day 3 were estimated. Mutations in the P. falciparum kelch 13 (Pfk13) gene and amplifications of plasmepsin (Pfpm2) and multidrug resistance-1 (Pfmdr-1) genes were also studied. RESULTS: A total of 1680 (249 for ASSP, 1079 for AL and 352 for DP) falciparum cases were successfully assessed. A PCR-adjusted ASSP cure rate of 100% was observed in Afghanistan and Pakistan. For AL, the cure rate was 100% in all but four sites in Sudan, where cure rates ranged from 92.1% to 98.8%. All but one patient were parasite-free at Day 3. For P. vivax, cure rates were 98.2% for CQ and 100% for AL. None of the samples from Afghanistan, Pakistan and Yemen had a Pfk13 mutation known to be associated with artemisinin resistance. In Sudan, the validated Pfk13 R622I mutation accounted for 53.8% (14/26) of the detected non-synonymous Pfk13 mutations, most of which were repeatedly detected in Gadaref. A prevalence of 2.7% and 9.3% of Pfmdr1 amplification was observed in Pakistan and Yemen, respectively. CONCLUSION: High efficacy of ASSP, AL and DP in the treatment of uncomplicated falciparum infection and of CQ and AL in the treatment of P. vivax was observed in the respective countries. The repeated detection of a relatively high rate of Pfk13 R622I mutation in Sudan underscores the need for close monitoring of the efficacy of recommended ACTs, parasite clearance rates and Pfk13 mutations in Sudan and beyond. Registration numbers of the trials: ACTRN12622000944730 and ACTRN12622000873729 for Afghanistan, ACTRN12620000426987 and ACTRN12617001025325 for Pakistan, ACTRN12618001224213 for Somalia, ACTRN12617000276358, ACTRN12622000930785 and ACTRN12618001800213 for Sudan and ACTRN12617000283370 for Yemen.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Estudios Prospectivos , Combinación Arteméter y Lumefantrina/uso terapéutico , Arteméter/uso terapéutico , Artemisininas/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Cloroquina/uso terapéutico , Artesunato/uso terapéutico , Plasmodium falciparum/genética , Combinación de Medicamentos , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Resistencia a Medicamentos/genética
3.
PLoS One ; 18(7): e0287668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37471337

RESUMEN

Plasmodium vivax Duffy Binding Protein (PvDBP) is essential for interacting with Duffy antigen receptor for chemokines (DARC) on the surface of red blood cells to allow invasion. Earlier whole genome sequence analyses provided evidence for the duplications of PvDBP. It is unclear whether PvDBP duplications play a role in recent increase of P. vivax in Sudan and in Duffy-negative individuals. In this study, the prevalence and type of PvDBP duplications, and its relationship to demographic and clinical features were investigated. A total of 200 malaria-suspected blood samples were collected from health facilities in Khartoum, River Nile, and Al-Obied. Among them, 145 were confirmed to be P. vivax, and 43 (29.7%) had more than one PvDBP copies with up to four copies being detected. Both the Malagasy and Cambodian types of PvDBP duplication were detected. No significant difference was observed between the two types of duplications between Duffy groups. Parasitemia was significantly higher in samples with the Malagasy-type than those without duplications. No significant difference was observed in PvDBP duplication prevalence and copy number among study sites. The functional significance of PvDBP duplications, especially those Malagasy-type that associated with higher parasitemia, merit further investigations.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Humanos , Duplicación de Gen , Sudán/epidemiología , Parasitemia/genética , Prevalencia , Antígenos de Protozoos , Proteínas Protozoarias/metabolismo , Malaria Vivax/epidemiología , Malaria Vivax/genética , Sistema del Grupo Sanguíneo Duffy/genética , Sistema del Grupo Sanguíneo Duffy/metabolismo , Eritrocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA