Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 233: 116522, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392825

RESUMEN

Slaughterhouse wastewater is a major environmental concern in many Vietnamese cities due to its high organic content and unpleasant odor. This study aimed to evaluate performance of a submerged flat sheet Anaerobic membrane bioreactor (AnMBR) system at different hydraulic retention time (HRT, 8-48 h) treating wastewater from a slaughterhouse in Hanoi City (Vietnam) at ambient temperature. The wastewater characteristics were as follows: chemical oxygen demand (COD) of 910 ± 171 mg/L; suspended solids (SS) of 273 ± 139 mg/L; and total nitrogen (T-N) of 115 ± 31 mg/L. The AnMBR system achieved high removal efficiencies for SS (99%) and COD (>90%) at an optimum HRT of 24 h. The biomethane yield reached 0.29 NL CH4/g CODinf. Importantly, the system maintained stable operation without flux decay and membrane fouling. HRT longer than 24 h could offer the better effluent quality without an increase in transmembrane pressure (TMP); however, it led to a lower methane production rate. Shorter HRT of 8-12 h caused a high TMP over -10 kPa, posing a risk for membrane fouling and biomass loss during cleaning, thus resulting in a low methane production. Our results suggest that AnMBR can be a reliable technology for wastewater treatment, reuse and energy recover from slaughterhouse wastewater in Vietnam and other similar climate countries.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Mataderos , Membranas Artificiales , Reactores Biológicos , Metano
2.
Water Sci Technol ; 86(1): 66-79, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35838283

RESUMEN

This study aimed to assess the effect of carbohydrates on protein hydrolysis and potential implications for the design of anaerobic reactors for treatment of protein-rich wastewaters. Batch experiments were carried out with dissolved starch (Sta) and gelatine (Gel) at different chemical oxygen demand (COD) ratios ranging from 0 to 5.5 under methanogenic conditions for methane production and up to 3.8 under non-methanogenic conditions for volatile fatty acids (VFA), both at 35 °C. The Sta/Gel did not have a direct effect on the gelatine hydrolysis rate constants under methanogenic (0.51 ± 0.05 L g VSS-1 day-1) and non-methanogenic conditions (0.48 ± 0.05 L g VSS-1 day-1). However, under non-methanogenic conditions, gelatine hydrolysis was inhibited by 64% when a spectrum of VFA was added at a VFA/Gel (COD) ratio of 5.9. This was not caused by the ionic strength exerted by VFA but by the VFA itself. These results imply that methanogenesis dictates the reactor design for methane production but hydrolysis does for VFA production from wastewater proteins.


Asunto(s)
Reactores Biológicos , Metano , Anaerobiosis , Carbohidratos , Ácidos Grasos Volátiles/metabolismo , Hidrólisis , Metano/metabolismo , Aguas Residuales
3.
Comput Methods Programs Biomed ; 197: 105751, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32957061

RESUMEN

BACKGROUND AND AIM: deep learning algorithms have not been successfully used for the left ventricle (LV) detection in echocardiographic images due to overfitting and vanishing gradient descent problem. This research aims to increase accuracy and improves the processing time of the left ventricle detection process by reducing the overfitting and vanishing gradient problem. METHODOLOGY: the proposed system consists of an enhanced deep convolutional neural network with an extra convolutional layer, and dropout layer to solve the problem of overfitting and vanishing gradient. Data augmentation was used for increasing the accuracy of feature extraction for left ventricle detection. RESULTS: four pathological groups of datasets were used for training and evaluation of the model: heart failure without infarction, heart failure with infarction, and hypertrophy, and healthy. The proposed model provided an accuracy of 94% in left ventricle detection for all the groups compared to the other current systems. The results showed that the processing time was reduced from 0.45 s to 0.34 s in an average. CONCLUSION: the proposed system enhances accuracy and decreases processing time in the left ventricle detection. This paper solves the issues of overfitting of the data.


Asunto(s)
Aprendizaje Profundo , Ventrículos Cardíacos , Algoritmos , Ventrículos Cardíacos/diagnóstico por imagen , Redes Neurales de la Computación
4.
Biotechnol Biofuels ; 12: 254, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31673289

RESUMEN

BACKGROUND: Many kinds of wastewaters contain appreciable quantities of protein. Anaerobic processes are suitable for the treatment of wastewater high in organics to achieve pollution control and recovery of energy as methane and hydrogen, or intermediates for production of biofuels and valuable biochemicals. A distinction between protein hydrolysis and amino acid fermentation, especially for dissolved proteins, is needed to target which one is truly rate-limiting and to effectively harvest bioproducts during anaerobic conversion of these wastewaters. This study explored mesophilic anaerobic hydrolysis and amino acid fermentation of gelatine, as a model for dissolved proteins, at pH 7 and at pH 5. RESULTS: The results showed that at pH 7, protein hydrolysis (first-order rate of 0.15 h-1) was approximately 5 times faster than acidification of the hydrolysis products (first-order rate of 0.03 h-1), implying that not hydrolysis but acidification was the rate-limiting step in anaerobic dissolved protein degradation. This was confirmed by (temporary) accumulation of amino acids. Nineteen different amino acids were detected during the first 8 incubation hours of gelatine at neutral pH and the total chemical oxygen demand (COD) of these 19 amino acids was up to approximately 40% of the COD of the gelatine that was added. Protein hydrolysis at pH 5 was 2-25 times slower than at pH 7. Shifting the initial pH from neutral to acidic conditions (pH 5) inhibited protein degradation and changed the volatile fatty acids (VFA) product profile. Furthermore, the presence or absence of methanogenic activity did not affect the rates of protein hydrolysis and acidification. CONCLUSIONS: The findings in this study can help to set a suitable solid retention time to accomplish anaerobic degradation of protein-rich wastewaters in continuous reactor systems. For example, if the target is harvesting VFAs, methanogens can be washed-out for a shorter retention time while amino acid fermentation, instead of hydrolysis as assumed previously, will govern the design and solutions to improve the system dealing with dissolved proteins.

5.
Bioresour Technol ; 102(2): 592-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20813520

RESUMEN

Five different pre-treatments were investigated to enhance the solubilisation and anaerobic biodegradability of kitchen waste (KW) in thermophilic batch and continuous tests. In the batch solubilisation tests, the highest and the lowest solubilisation efficiency were achieved with the thermo-acid and the pressure-depressure pre-treatments, respectively. However, in the batch biodegradability tests, the highest cumulative biogas production was obtained with the pressure-depressure method. In the continuous tests, the best performance in terms of an acceptable biogas production efficiency of 60% and stable in-reactor CODs and VFA concentrations corresponded to the pressure-depressure reactor, followed by freeze-thaw, acid, thermo-acid, thermo and control. The maximum OLR (5 g COD L(-1) d(-1)) applied in the pressure-depressure and freeze-thaw reactors almost doubled the control reactor. From the overall analysis, the freeze-thaw pre-treatment was the most profitable process with a net potential profit of around 11.5 € ton(-1) KW.


Asunto(s)
Metano/metabolismo , Eliminación de Residuos/métodos , Aguas del Alcantarillado/análisis , Anaerobiosis , Biodegradación Ambiental , Biocombustibles , Reactores Biológicos/microbiología , Análisis Costo-Beneficio , Hidrólisis , Cinética , Eliminación de Residuos/economía , Solubilidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA