Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Int J Biol Macromol ; 278(Pt 2): 134773, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151843

RESUMEN

Viral diseases pose a significant threat to livestock husbandry and plant cultivation. CRISPR/Cas9-mediated targeted editing of viral genes offers a promising approach to antiviral therapy. The silkworm, Bombyx mori, is an economically important insect susceptible to infection by B. mori nucleopolyhedrovirus (BmNPV), and viral outbreaks cause severe economic losses to the sericulture industry. Here, we identified BmNPV orf76 as a viral late gene that is highly similar to Autographa californica multiple nucleopolyhedrovirus Ac93. The deletion of orf76 abolished BmNPV proliferation and hindered the production of infectious budded viruses. We generated a transgenic line, Cas9(+)/sgorf76(+), that did not affect the growth or development of the silkworm and demonstrated that the transgenic line Cas9(+)/sgorf76(+) efficiently cleaved orf76 at the sgorf76 site, resulting in large deletions at 120 h post-infection, with no observed off-target effects. Survival analyses revealed that the transgenic line Cas9(+)/sgorf76(+) exhibited significantly higher survival rates than the control lines Cas9(-)/sgorf76(-), regardless of the BmNPV inoculation dose. Additionally, the number of BmNPV DNA copies and the expression levels of viral genes were markedly inhibited in the transgenic line Cas9(+)/sgorf76(+) compared with the control line Cas9(-)/sgorf76(-). The results provide a promising target for Cas9-mediated antiviral therapy against BmNPV, and the findings provide new insights for baculovirus gene function studies and lepidopteran pest control.


Asunto(s)
Animales Modificados Genéticamente , Bombyx , Sistemas CRISPR-Cas , Nucleopoliedrovirus , Animales , Bombyx/virología , Bombyx/genética , Nucleopoliedrovirus/genética , Antivirales/farmacología , Edición Génica/métodos , Sistemas de Lectura Abierta/genética , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
2.
Int J Biol Macromol ; 275(Pt 1): 133300, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914396

RESUMEN

The 871C silkworm strain exhibits a high level of resistance to Bombyx mori nucleopolyhedrovirus (BmNPV), making it a valuable variety for the sericulture industry. Understanding the underlying mechanism of its resistance holds great biological significance and economic value in addressing viral disease risks in sericulture. Initially, we infected the resistant strain 871C and its control strain 871 with BmNPV and conducted secondary infection experiments using the progeny occlusion bodies (OBs). As a result, a significant decrease in pathogenicity was observed. Electron microscopy analysis revealed that 871C produces progeny virions with defective DNA packaging, reducing virulence following BmNPV infection. Blood proteomic identification of the silkworm variety 871C and control 871 after BmNPV infection demonstrated the crucial role of the viral proteins P6.9 and VLF-1 in the production of defective viruses by impeding the proper encapsulation of viral DNA. Additionally, we discovered that BmHSP19.9 interacts with P6.9 and VLF-1 and that its expression is significantly upregulated after BmNPV infection. BmHSP19.9 exhibits strong antiviral activity, in part by preventing the entry of the proteins P6.9 and VLF-1 into the nucleus, thereby hindering viral nucleocapsid and viral DNA assembly. Our findings indicate that the antiviral silkworm strain 871C inhibits BmNPV proliferation by upregulating Bmhsp19.9 and impeding the nuclear localization of the viral proteins P6.9 and VLF-1, leading to the production of defective viral particles. This study offers a comprehensive analysis of the antiviral mechanism in silkworms from a viral perspective, providing a crucial theoretical foundation for future antiviral research and the breeding of resistant silkworm strains.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Bombyx/virología , Animales , Nucleopoliedrovirus/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Virión/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteómica/métodos
3.
Plant Physiol Biochem ; 212: 108778, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838570

RESUMEN

The albino tea cultivar is one of the most important germplasms for key gene mining and high-quality tea producing. In order to elucidate the chlorophyll-deficient mechanism of albino cultivar 'Huangjinya' and its offspring, color difference, photosynthetic pigments and the relevant genes' expression of the tender shoots were comprehensively investigated in this study. Among the tested 16 offspring, 5 exhibited albino phenotype in spring and autumn, 3 showed albino phenotype in spring but normal green in autumn, while the rests were all normal green. The shoot of albino offspring had significantly higher lightness and/or yellowness than that of green ones, and possessed dramatically lower photosynthetic pigments and chlorophyll precursor protochlorophyllide (Pchlide), as well as higher chlorophyll a/chlorophyll b but lower chlorophylls/carotenoids in comparison with green ones. Among the tested genes involved in chlorophyll and carotenoid metabolism pathways, expression of the magnesium protoporphyrin IX monomethyl ester cyclase (CRD), 3,8-divinyl chlorophyllide 8-vinyl reductase (DVR), 5-aminolevulinate dehydratase 1 (HEMB1), 1-deoxy-D-xylulose 5-phosphate synthase 1 (DXS1) and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (ISPH) was remarkably down-regulated in shoots of the albino offspring. Color difference indices of the offspring were significantly correlated with the levels of photosynthetic pigments and Pchlide, and low level of chlorophylls in shoot of albino offspring was mainly due to conversion obstacle from magnesium protoporphyrin Ⅸ (Mg-Proto IX) to Pchlide which might be attributed to down-regulatory expression of CRD and DVR.


Asunto(s)
Clorofila , Fenotipo , Protoclorofilida , Protoporfirinas , Clorofila/metabolismo , Protoclorofilida/metabolismo , Protoporfirinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fotosíntesis
4.
Pest Manag Sci ; 80(9): 4564-4574, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38742692

RESUMEN

BACKGROUND: Bombyx mori nuclear polyhedrosis virus (BmNPV), as a typical baculovirus, is the primary pathogen that infects the silkworm B. mori, a lepidopteran species. Owing to the high biological safety of BmNPV in infecting insects, it is commonly utilized as a biological insecticide for pest control. Apoptosis is important in the interaction between the host and pathogenic microorganisms. MicroRNAs (miRNAs) influence immune responses and promote stability of the immune system via apoptosis. Therefore, the study of apoptosis-related miRNA in silkworms during virus infection can not only provide support for standardizing the prevention and control of diseases and insect pests, but also reduce the economic losses to sericulture caused by the misuse of biological pesticides. RESULTS: Through transcriptome sequencing, we identified a miRNA, miR-31-5p, and demonstrated that it can inhibit apoptosis in silkworm cells and promote the proliferation of BmNPV in BmE-SWU1 cells. We identified a target gene of miR-31-5p, B. mori cytochrome P450 9e2 (BmCYP9e2), and demonstrated that it can promote apoptosis in silkworm cells and inhibit the proliferation of BmNPV. Moreover, we constructed transgenic silkworm strains with miR-31-5p knockout and confirmed that they can inhibit the proliferation of BmNPV. CONCLUSION: These data indicate that miR-31-5p may exert functions of inhibiting apoptosis and promoting virus proliferation by regulating BmCYP9e2. The findings demonstrate how miRNAs influence host cell apoptosis and how they are involved in the host immune system response to viruses, providing important insights into the applications of biological insecticides for pest control. © 2024 Society of Chemical Industry.


Asunto(s)
Apoptosis , Bombyx , Sistema Enzimático del Citocromo P-450 , Proteínas de Insectos , MicroARNs , Nucleopoliedrovirus , Animales , Bombyx/genética , Bombyx/virología , Bombyx/crecimiento & desarrollo , MicroARNs/genética , MicroARNs/metabolismo , Nucleopoliedrovirus/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Replicación Viral/efectos de los fármacos , Línea Celular
5.
Food Chem ; 452: 139535, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728890

RESUMEN

This study systematically investigates the residue changes, processing factors (PFs), and relation between the physicochemical properties of pesticides during peanut processing. Results revealed that peeling, washing, and boiling treatments removed partial or substantial pesticide residues from peanuts with PFs of 0.29-1.10 (most <1). By contrast, pesticides appeared to be partially concentrated during roasting, stir-frying, and deep-frying peanuts with PFs of 0.16-1.25. During oil pressing, 13 of the 28 pesticides were concentrated in the peanut oil (PF range: 1.06-2.01) and 25 of the pesticides were concentrated in the peanut meal (1.07-1.46). Physicochemical parameters such as octanol-water partition coefficient, degradation point, molecular weight, and melting point showed significant correlations with PFs during processing. Notably, log Kow exhibited strong positive correlations with the PFs of boiling, roasting, and oil pressing. Overall, this study describes the fate of pesticides during multiproduct processing, providing guidance to promote the healthy consumption of peanuts for human health.


Asunto(s)
Arachis , Contaminación de Alimentos , Manipulación de Alimentos , Residuos de Plaguicidas , Arachis/química , Residuos de Plaguicidas/química , Residuos de Plaguicidas/análisis , Contaminación de Alimentos/análisis , Culinaria , Calor
6.
Int J Biol Macromol ; 268(Pt 2): 131819, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688334

RESUMEN

The Notch signaling pathway is important in cell cycle regulation and cell proliferation. The transcriptional repressor Suppressor of Hairless [Su(H)] is a molecular switch for downstream target genes of the Notch signaling pathway but the regulatory mechanism of the Su(H) gene in the cell cycle is unclear. We determined the function of the Notch signaling pathway and Bombyx mori Su(H) [BmSu(H)] in the regulation of the silkworm cell cycle. Inhibition of Notch signaling promoted the replication of DNA in silkworm gland cells and expression of the BmSu(H) gene was significantly reduced. Overexpression of the BmSu(H) gene inhibited DNA replication and cell proliferation of silkworm cells, whereas knockout of the BmSu(H) gene promoted DNA replication and cell proliferation. Knockout of the BmSu(H) in silkworms improved the efficiency of silk gland cell endoreplication and increased important economic traits. We demonstrated that BmSu(H) protein can directly bind to the promoters of BmCyclinA, BmCyclinE and BmCDK1 genes, inhibiting or promoting their transcription at the cell and individual level. This study identified molecular targets for genetic improvement of the silkworm and also provided insights into the regulatory mechanism of the cell cycle.


Asunto(s)
Bombyx , Ciclo Celular , Proteínas de Insectos , Animales , Bombyx/genética , Bombyx/metabolismo , Ciclo Celular/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Transducción de Señal , Seda/genética , Proliferación Celular/genética , Replicación del ADN , Regiones Promotoras Genéticas/genética , Endorreduplicación , Regulación de la Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
7.
J Hazard Mater ; 470: 134268, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608592

RESUMEN

Ginger is consumed as a spice and medicine globally. However, pesticide residues in ginger and their residue changes during processing remain poorly understood. Our results demonstrate that clothianidin, carbendazim and imidacloprid were the top detected pesticides in 152 ginger samples with detection rates of 17.11-27.63%, and these pesticides had higher average residues of 44.07-97.63 µg/kg. Although most samples contained low levels of pesticides, 66.45% of the samples were detected with pesticides, and 38.82% were contaminated with 2-5 pesticides. Peeling, washing, boiling and pickling removed different amounts of pesticides from ginger (processing factor range: 0.06-1.56, most <1). By contrast, pesticide residues were concentrated by stir-frying and drying (0.50-6.45, most >1). Pesticide residues were influenced by pesticide physico-chemical parameters involving molecular weight, melting point, degradation point and octanol-water partition coefficient by different ginger processing methods. Chronic and acute dietary risk assessments suggest that dietary exposure to pesticides from ginger consumption was within acceptable levels for the general population. This study sheds light on pesticide residues in ginger from market to processing and is of theoretical and practical value for ensuring ginger quality and safety.


Asunto(s)
Contaminación de Alimentos , Residuos de Plaguicidas , Zingiber officinale , Zingiber officinale/química , Residuos de Plaguicidas/análisis , Medición de Riesgo , Contaminación de Alimentos/análisis , Manipulación de Alimentos , Humanos , Exposición Dietética/análisis
8.
Int J Biol Macromol ; 264(Pt 2): 130842, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484820

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes significant losses to the silkworm industry. Numerous antiviral genes and proteins have been identified by studying silkworm resistance to BmNPV. However, the molecular mechanism of silkworm resistance to BmNPV is unclear. We analyzed the differences between the susceptible strain 871 and a near-isogenic resistant strain 871C. The survival of strain 871C was significantly greater than that of 871 after oral and subcutaneous exposure to BmNPV. Strain 871C exhibited a nearly 10,000-fold higher LD50 for BmNPV compared to 871. BmNPV proliferation was significantly inhibited in all tested tissues of strain 871C using HE strain and fluorescence analysis. Strain 871C exhibited cellular resistance to BmNPV rather than peritrophic membrane or serum resistance. Strain 871C suppressed the expression of the viral early gene Bm60. This led to the inhibition of BmNPV DNA replication and late structural gene transcription based on the cascade regulation of baculovirus gene expression. Bm60 could also interact with the viral DNA binding protein and alkaline nuclease, as well as host proteins Methylcrotonoyl-CoA carboxylase subunit alpha, mucin-2-like protein, and 30 K-8. Overexpression of 30 K-8 significantly inhibited BmNPV proliferation. These results increase understanding of the molecular mechanism behind silkworm resistance to BmNPV and suggest targets for the breeding of resistant silkworm strains and the controlling pest of Lepidoptera.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Bombyx/metabolismo , Nucleopoliedrovirus/fisiología , Genes Virales , Proliferación Celular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
9.
Food Chem X ; 21: 101172, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38379796

RESUMEN

Pesticide residues in cowpeas have raised worldwide concern. However, only a few studies have focused on pesticide accumulation and distribution in greenhouse and open-field cowpeas. Field trial results suggest that difenoconazole, dimethomorph, thifluzamide and pyraclostrobin dissipated faster in open fields (mean half-lives, 1.72-1.99 days) than in greenhouses (2.09-3.55 days); moreover, fungicide residues in greenhouse cowpeas were 0.84-8.19 times higher than those in the open-field cowpeas. All fungicides accumulated in the greenhouse and open-field cowpeas after repeated spraying. Fungicide residues in old cowpeas were higher than those in tender cowpeas, and residues in the upper halves of cowpea pods were higher than those in the lower halves. In addition, cowpeas distributed in the lower halves of the plants had higher fungicide residues. Our findings suggest that greenhouse cultivation contributed to the pesticide residues in cowpeas after repeated spraying, although the levels of dietary health risks remained acceptable under both cultivation scenarios.

10.
J Environ Manage ; 353: 120172, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38310799

RESUMEN

Understanding pesticide residue patterns in crops is important for ensuring human health. However, data on residue accumulation and distribution in cowpeas grown in the greenhouse and open field are lacking. Our results suggest that acetamiprid, chlorantraniliprole, cyromazine, and thiamethoxam residues in greenhouse cowpeas were 1.03-15.32 times higher than those in open field cowpeas. Moreover, repeated spraying contributed to the accumulation of pesticide residues in cowpeas. Clothianidin, a thiamethoxam metabolite, was detected at 1.04-86.00 µg/kg in cowpeas. Pesticide residues in old cowpeas were higher than those in tender cowpeas, and the lower half of the plants had higher pesticide residues than did the upper half. Moreover, pesticide residues differed between the upper and lower halves of the same cowpea pod. Chronic and acute dietary risk assessments indicated that the human health risk was within acceptable levels of cowpea consumption. Given their high residue levels and potential accumulation, pesticides in cowpeas should be continuously assessed.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Vigna , Humanos , Tiametoxam/análisis , Tiametoxam/metabolismo , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Vigna/metabolismo , Bioacumulación , Contaminación de Alimentos/análisis
11.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1019077

RESUMEN

Objective To build the early predictive model for chronic kidney disease(CKD)in hypertension and diabetes patients in the community.Methods The CKD patients were recruited from 4 health care centers in 4 urban areas in Kunming.The control group was residents without hypertension and diabetes(n = 1267).The disease group was residents with hypertension and/or diabetes(n = 566).The questionnaire survey,physical examination,laboratory testing,and 5 SNPs gene types in the PVT1 gene.The risk factors,which were filtered with logistics regression,were used to build predictive models.Four machine learning algorithms were built:support vector machine(SVM),random forest(RF),Na?ve Bayes(NB),and artificial neural network(ANN)models.Results Thirteen indicators included in the final diagnostic model:age,disease type,ethnicity,blood urea nitrogen,creatinine,eGFR from MDRD,ACR,eGFR from EPI2009,PAM13 score,sleep quality survey,staying-up late,PVT1 SNP rs11993333 and rs2720659.The accuracy,specificity,Kappa value,AUC of ROC,and PRC of ANN are greater than those of the other 3 models.The sensitivity of RF is the highest among 4 types of machine learning.Conclusions The ANN predictive model has a good ability of efficiency and classification to predict CKD with hypertension and/or diabetes patients in the community.

12.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069041

RESUMEN

Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Neoplasias Gástricas , Humanos , Péptidos Antimicrobianos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/química , Neoplasias Gastrointestinales/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Neoplasias Gástricas/tratamiento farmacológico , Antibacterianos/farmacología
13.
Angew Chem Int Ed Engl ; 62(33): e202305510, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37329214

RESUMEN

Transition metal-catalyzed C-S cross-coupling has emerged as an important strategy to furnish thioethers; however, the dominant utilization of noble metal catalysts as well as the construction of challenging C(sp3 )-S bonds by transition metal-catalysis remain highly problematic. Earth-abundant manganese has gathered increasing interest as an attractive catalyst for new reaction development; nevertheless, C(sp3 )-S cross-coupling reaction by manganese catalysis has not been reported. Herein, we disclose a highly efficient manganese-catalyzed redox-neutral thiolation of a broad range of alkyl halides with thioformates as practical sulfuration agents. Strategically, employing easily synthesized thioformates as thiyl radical precursors allows access to various aryl and alkyl thioethers in good to excellent yields. Notably, this redox-neutral method avoids the utilization of strong bases, external ligands, forcing reaction conditions, and stoichiometric manganese, thus presenting apparent advantages, such as broad substrate scope, excellent functional group compatibility, and mild reaction conditions. Finally, the utilities of this method are also illustrated by downstream transformations and late-stage thiolation of structurally complex natural products and pharmaceuticals.

14.
Foods ; 12(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37238900

RESUMEN

Fluopyram and trifloxystrobin are widely used for controlling various plant diseases in cucumbers and cowpeas. However, data on residue behaviors in plant cultivation and food processing are currently lacking. Our results showed that cowpeas had higher fluopyram and trifloxystrobin residues (16.48-247.65 µg/kg) than cucumbers (877.37-3576.15 µg/kg). Moreover, fluopyram and trifloxystrobin dissipated faster in cucumbers (half-life range, 2.60-10.66 d) than in cowpeas (10.83-22.36 d). Fluopyram and trifloxystrobin were the main compounds found in field samples, and their metabolites, fluopyram benzamide and trifloxystrobin acid, fluctuated at low residue levels (≤76.17 µg/kg). Repeated spraying resulted in the accumulation of fluopyram, trifloxystrobin, fluopyram benzamide and trifloxystrobin acid in cucumbers and cowpeas. Peeling, washing, stir-frying, boiling and pickling were able to partially or substantially remove fluopyram and trifloxystrobin residues from raw cucumbers and cowpeas (processing factor range, 0.12-0.97); on the contrary, trifloxystrobin acid residues appeared to be concentrated in pickled cucumbers and cowpeas (processing factor range, 1.35-5.41). Chronic and acute risk assessments suggest that the levels of fluopyram and trifloxystrobin in cucumbers and cowpeas were within a safe range based on the field residue data of the present study. The potential hazards of fluopyram and trifloxystrobin should be continuously assessed for their high residue concentrations and potential accumulation effects.

15.
Food Chem ; 423: 136384, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201257

RESUMEN

Understanding the residue fate of fluxapyroxad is critical for food safety and human health. The present study profiled the dissipation, metabolism, accumulation, removal and risk assessment of fluxapyroxad in cucumbers and cowpeas from field to table. Greenhouse-field trials suggested that fluxapyroxad dissipated faster in cucumbers than in cowpeas, and M700F008 was the only detected metabolite at

Asunto(s)
Cucumis sativus , Verduras , Vigna , Vigna/química , Vigna/metabolismo , Cucumis sativus/química , Cucumis sativus/metabolismo , Verduras/química , Verduras/metabolismo , Medición de Riesgo
16.
Environ Pollut ; 328: 121637, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37059173

RESUMEN

Triazole fungicides (TFs) are extensively used on greenhouse vegetables and are ubiquitously detected in the environment. However, the human health and ecological risks associated with the presence of TFs in the soil are unclear. In this study, ten widely used TFs were measured in 283 soil samples from vegetable greenhouses across Shandong Province, China, and their potential human health and ecological risks were assessed. Among all soil samples, difenoconazole, myclobutanil, triadimenol, and tebuconazole were the top detected TFs, with detection rates of 85.2-100%; these TFs had higher residues, with average concentrations of 5.47-23.8 µg/kg. Although most of the detectable TFs were present in low amounts, 99.3% of the samples were contaminated with 2-10 TFs. Human health risk assessment based on hazard quotient (HQ) and hazard index (HI) values indicated that TFs posed negligible non-cancer risks for both adults and children (HQ range, 5.33 × 10-10 to 2.38 × 10-5; HI range, 1.95 × 10-9 to 3.05 × 10-5, <1). Ecological risk assessment based on the toxicity exposure ratio (TER) and risk quotient (RQ) values indicated that difenoconazole was a potential risk factor for soil organisms (TERmax = 1 for Eisenia foetida, <5; RQmean = 1.19 and RQmax = 9.04, >1). Moreover, 84 of the 283 sites showed a high risk (RQsite range, 1.09-9.08, >1), and difenoconazole was the primary contributor to the overall risk. Considering their ubiquity and potential hazards, TFs should be continuously assessed and prioritized for pesticide risk management.


Asunto(s)
Monitoreo del Ambiente , Fungicidas Industriales , Metales Pesados , Contaminantes del Suelo , Triazoles , Adulto , Niño , Humanos , China , Metales Pesados/análisis , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis , Triazoles/análisis
17.
Pestic Biochem Physiol ; 191: 105380, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963947

RESUMEN

Apoptosis, as an important part of the immune response, is one of the core events in the host-virus interaction. Studies have shown that long non-coding RNAs (lncRNAs) play important roles in the process of cell apoptosis and pathophysiology. To investigate the apoptosis-related lncRNAs involved in Bombyx mori nucleopolyhedrovirus (BmNPV) infecting silkworms, transcriptome sequencing was conducted based on silkworm cells infected with BmNPV before and after B. mori inhibitor of apoptosis (Bmiap) gene knockout. A total of 23 differentially expressed lncRNAs were identified as being associated with the mitochondrial apoptosis pathway. Moreover, we demonstrated that B. mori LINC5438 has the function of inhibiting apoptosis in silkworm cells. Overexpression of LINC5438 promoted the proliferation of BmNPV, while interference with LINC5438 inhibited its proliferation, indicating that LINC5438 plays an important role in BmNPV infection. Our results also showed that LINC5438 can regulate the expression of Bmiap, BmDronc, BmICE, and its predicted target gene BmAIF, suggesting that LINC5438 may function through the mitochondrial pathway. These findings provide important insights into the mechanisms of virus-host interaction and the applications of baculoviruses as biological insecticides.


Asunto(s)
Bombyx , ARN Largo no Codificante , Animales , Bombyx/metabolismo , ARN Largo no Codificante/genética , Apoptosis , Proliferación Celular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
18.
Angew Chem Int Ed Engl ; 62(13): e202218286, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36719253

RESUMEN

Transition-metal catalyzed intermolecular 1,2-diarylation of electronically unactivated alkenes has emerged as an extensive research topic in organic synthesis. However, most examples are mainly limited to terminal alkenes. Furthermore, transition-metal catalyzed asymmetric 1,2-diarylation of unactivated alkenes still remains unsolved and is a formidable challenge. Herein, we describe a highly efficient directed nickel-catalyzed reductive 1,2-diarylation of unactivated internal alkenes with high diastereoselectivities. More importantly, our further effort towards enantioselective 1,2-diarylation of the unactivated terminal and challenging internal alkenes is achieved, furnishing various polyarylalkanes featuring benzylic stereocenters in high yields and with good to high enantioselectivities and high diastereoselectivities. Interestingly, the generation of cationic Ni-catalyst by adding alkali metal fluoride is the key to increased efficiency of this enantioselective reaction.

19.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557927

RESUMEN

Sweet tea is a popular herbal drink in southwest China, and it is usually made from the shoots and tender leaves of Lithocarpus litseifolius. The sweet taste is mainly attributed to its high concentration of dihydrochalcones. The distribution and biosynthesis of dihydrochaldones in sweet tea, as well as neuroprotective effects in vitro and in vivo tests, are reviewed in this paper. Dihydrochalones are mainly composed of phloretin and its glycosides, namely, trilobatin and phloridzin, and enriched in tender leaves with significant geographical specificity. Biosynthesis of the dihydrochalones follows part of the phenylpropanoid and a branch of flavonoid metabolic pathways and is regulated by expression of the genes, including phenylalanine ammonia-lyase, 4-coumarate: coenzyme A ligase, trans-cinnamic acid-4-hydroxylase and hydroxycinnamoyl-CoA double bond reductase. The dihydrochalones have been proven to exert a significant neuroprotective effect through their regulation against Aß deposition, tau protein hyperphosphorylation, oxidative stress, inflammation and apoptosis.


Asunto(s)
Chalconas , Gusto , Neuroprotección , Chalconas/farmacología , Té/genética
20.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142194

RESUMEN

The immediate early protein 1 (IE1) acts as a transcriptional activator and is essential for viral gene transcription and viral DNA replication. However, the key regulatory domains of IE1 remain poorly understood. Here, we analyzed the sequence characteristics of Bombyx mori nucleopolyhedrovirus (BmNPV) IE1 and identified the key functional domains of BmNPV IE1 by stepwise truncation. Our results showed that BmNPV IE1 was highly similar to Autographa californica nucleopolyhedrovirus (AcMNPV) IE1, but was less conserved with IE1 of other baculoviruses, the C-terminus of IE1 was more conserved than the N-terminus, and BmNPV IE1 was also necessary for BmNPV proliferation. Moreover, we found that IE1158-208 was a major nuclear localization element, and IE11-157 and IE1539-559 were minor nuclear localization elements, but the combination of these two minor elements was equally sufficient to fully mediate the nuclear entry of IE1. Meanwhile, IE11-258, IE1560-584, and the association of amino acids 258 and 259 were indispensable for the transactivation activity of BmNPV IE1. These results systematically resolve the functional domains of BmNPV IE1, which contribute to the understanding of the mechanism of baculovirus infection and provide a possibility to synthesize a small molecule IE1-truncated mutant as an agonist or antagonist.


Asunto(s)
Bombyx , Replicación del ADN , Aminoácidos/metabolismo , Animales , Bombyx/metabolismo , ADN Viral , Regulación Viral de la Expresión Génica , Proteínas de Insectos/genética , Nucleopoliedrovirus , Transactivadores/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA