Your browser doesn't support javascript.
loading
BmHSP19.9 targeting P6.9 and VLF-1 to mediate the formation of defective progeny viruses in the silkworm antiviral variety 871C.
Huang, Liang; Chen, Ting-Ting; Dong, Zhan-Qi; Zhang, Ya; Lin, Yu; Chen, Peng; Pan, Min-Hui; Lu, Cheng.
Afiliación
  • Huang L; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
  • Chen TT; Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400716, China.
  • Dong ZQ; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
  • Zhang Y; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
  • Lin Y; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
  • Chen P; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
  • Pan MH; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China. Electronic address: pmh047@126.com.
  • Lu C; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China. Electronic address: lucheng@swu.edu.cn.
Int J Biol Macromol ; 275(Pt 1): 133300, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38914396
ABSTRACT
The 871C silkworm strain exhibits a high level of resistance to Bombyx mori nucleopolyhedrovirus (BmNPV), making it a valuable variety for the sericulture industry. Understanding the underlying mechanism of its resistance holds great biological significance and economic value in addressing viral disease risks in sericulture. Initially, we infected the resistant strain 871C and its control strain 871 with BmNPV and conducted secondary infection experiments using the progeny occlusion bodies (OBs). As a result, a significant decrease in pathogenicity was observed. Electron microscopy analysis revealed that 871C produces progeny virions with defective DNA packaging, reducing virulence following BmNPV infection. Blood proteomic identification of the silkworm variety 871C and control 871 after BmNPV infection demonstrated the crucial role of the viral proteins P6.9 and VLF-1 in the production of defective viruses by impeding the proper encapsulation of viral DNA. Additionally, we discovered that BmHSP19.9 interacts with P6.9 and VLF-1 and that its expression is significantly upregulated after BmNPV infection. BmHSP19.9 exhibits strong antiviral activity, in part by preventing the entry of the proteins P6.9 and VLF-1 into the nucleus, thereby hindering viral nucleocapsid and viral DNA assembly. Our findings indicate that the antiviral silkworm strain 871C inhibits BmNPV proliferation by upregulating Bmhsp19.9 and impeding the nuclear localization of the viral proteins P6.9 and VLF-1, leading to the production of defective viral particles. This study offers a comprehensive analysis of the antiviral mechanism in silkworms from a viral perspective, providing a crucial theoretical foundation for future antiviral research and the breeding of resistant silkworm strains.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bombyx / Nucleopoliedrovirus Límite: Animals Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bombyx / Nucleopoliedrovirus Límite: Animals Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos