Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Chem Commun (Camb) ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253901

RESUMEN

A bulky, unsymmetrical ß-diketiminate ligand, [HC{MeCN(Dip)}{MeCN(TCHP)}]- (Dip/TCHPNacnac; Dip = 2,6-diisopropylphenyl, TCHP = 2,4,6-tricyclohexylphenyl), has been utilised in the preparation of a series of magnesium alkyl and calcium, strontium and barium amide complexes. Reaction of these with PhSiH3 afforded the first complete series of ß-diketiminato heavier group 2 metal hydride complexes, [{(Dip/TCHPNacnac)M(µ-H)}2] (M = Mg, Ca, Sr or Ba). The unsymmetrical nature of the ß-diketiminate ligand seemingly promotes stabilising interactions of ligand Dip groups with the metal centres in the Ca, Sr and Ba hydride complexes.

2.
Nat Struct Mol Biol ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164525

RESUMEN

Methyl-CpG-binding protein 2 (MeCP2) is an essential chromatin-binding protein whose mutations cause Rett syndrome (RTT), a severe neurological disorder that primarily affects young females. The canonical view of MeCP2 as a DNA methylation-dependent transcriptional repressor has proven insufficient to describe its dynamic interaction with chromatin and multifaceted roles in genome organization and gene expression. Here we used single-molecule correlative force and fluorescence microscopy to directly visualize the dynamics of wild-type and RTT-causing mutant MeCP2 on DNA. We discovered that MeCP2 exhibits distinct one-dimensional diffusion kinetics when bound to unmethylated versus CpG methylated DNA, enabling methylation-specific activities such as co-repressor recruitment. We further found that, on chromatinized DNA, MeCP2 preferentially localizes to nucleosomes and stabilizes them from mechanical perturbation. Our results reveal the multimodal behavior of MeCP2 on chromatin that underlies its DNA methylation- and nucleosome-dependent functions and provide a biophysical framework for dissecting the molecular pathology of RTT mutations.

3.
FEBS J ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022865

RESUMEN

AXIN1 and AXIN2 are homologous proteins that inhibit the Wnt/ß-catenin signaling pathway, which is frequently hyperactive in colorectal cancer. Stabilization of AXIN1 and AXIN2 by inhibiting their degradation through tankyrase (TNKS) allows the attenuation of Wnt signaling in cancer, attracting interest for potential targeted therapy. Here, we found that knockout or knockdown of AXIN2 in colorectal cancer cells increased the protein stability of AXIN1. The increase in AXIN1 overcompensated for the loss of AXIN2 with respect to protein levels; however, functionally it did not because loss of AXIN2 activated the pathway. Moreover, AXIN2 was highly essential in the context of TNKS inhibition because TNKS-targeting small-molecule inhibitors completely failed to inhibit Wnt signaling and to stabilize AXIN1 in AXIN2 knockout cells. The increased AXIN1 protein stability and the impaired stabilization by TNKS inhibitors indicated disrupted TNKS-AXIN1 regulation in AXIN2 knockout cells. Concordantly, mechanistic studies revealed that co-expression of AXIN2 recruited TNKS to AXIN1 and stimulated TNKS-mediated degradation of transiently expressed AXIN1 wild-type and AXIN1 mutants with impaired TNKS binding. Taken together, our data suggest that AXIN2 promotes degradation of AXIN1 through TNKS in colorectal cancer cells by directly linking the two proteins, and these findings may be relevant for TNKS inhibition-based colorectal cancer therapies.

4.
Mol Neurobiol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722513

RESUMEN

Hexanucleotide repeat expansions (HREs) in the chromosome 9 open reading frame 72 (C9orf72) gene are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both are debilitating neurodegenerative conditions affecting either motor neurons (ALS) in the brain and spinal cord or neurons in the frontal and/or temporal cortical lobes (FTD). HREs undergo repeat-associated non-ATG (RAN) translation on both sense and anti-sense strands, generating five distinct dipeptide repeat proteins (DPRs), poly-GA, -GR, -GP, -PA and -PR. Perturbed proteostasis is well-recognised in ALS pathogenesis, including processes affecting the endoplasmic reticulum (ER) and Golgi compartments. However, these mechanisms have not been well characterised for C9orf72-mediated ALS/FTD. In this study we demonstrate that C9orf72 DPRs polyGA, polyGR and polyGP (× 40 repeats) disrupt secretory protein transport from the ER to the Golgi apparatus in neuronal cells. Consistent with this finding, these DPRs also induce fragmentation of the Golgi apparatus, activate ER stress, and inhibit the formation of the omegasome, the precursor of the autophagosome that originates from ER membranes. We also demonstrate Golgi fragmentation in cells undergoing RAN translation that express polyGP. Furthermore, dysregulated ER-Golgi transport was confirmed in C9orf72 patient dermal fibroblasts. Evidence of aberrant ER-derived vesicles in spinal cord motor neurons from C9orf72 ALS patients compared to controls was also obtained. These data thus confirm that ER proteostasis and ER-Golgi transport is perturbed in C9orf72-ALS in the absence of protein over-expression. Hence this study identifies novel molecular mechanisms associated with the ER and Golgi compartments induced by the C9orf72 HRE.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38726482

RESUMEN

In patients of Asian ancestry, a heterozygous CGG repeat expansion of >100 units in LRP12 is the cause of oculopharyngodistal myopathy type 1 (OPDM1). Repeat lengths of between 61 and 100 units have been associated with rare amyotrophic lateral sclerosis (ALS) cases of Asian ancestry, although with unusually long disease duration and without significant upper motor neuron involvement. This study sought to determine whether LRP12 CGG repeat expansions were also present in ALS patients of European ancestry. Whole-genome sequencing data from 608 sporadic ALS patients, 35 familial ALS probands, and 4703 neurologically normal controls were screened for LRP12 CGG expansions using ExpansionHunter v4. All individuals had LRP12 CGG repeat lengths within the normal range of 3-25 units. To date, LRP12 CGG repeat expansions have not been reported in ALS patients of European ancestry and may be limited to rare ALS patients of Asian ancestry and atypical clinical presentations.


Asunto(s)
Esclerosis Amiotrófica Lateral , Población Blanca , Humanos , Esclerosis Amiotrófica Lateral/genética , Masculino , Femenino , Población Blanca/genética , Persona de Mediana Edad , Anciano , Adulto , Proteínas Relacionadas con Receptor de LDL/genética , Estudios de Cohortes , Expansión de Repetición de Trinucleótido/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-38461964

RESUMEN

BACKGROUND: Patients with psychosis and patients with depression exhibit widespread neurobiological abnormalities. The analysis of dynamic functional connectivity (dFC) allows for the detection of changes in complex brain activity patterns, providing insights into common and unique processes underlying these disorders. METHODS: We report the analysis of dFC in a large sample including 127 patients at clinical high risk for psychosis, 142 patients with recent-onset psychosis, 134 patients with recent-onset depression, and 256 healthy control participants. A sliding window-based technique was used to calculate the time-dependent FC in resting-state magnetic resonance imaging data, followed by clustering to reveal recurrent FC states in each diagnostic group. RESULTS: We identified 5 unique FC states, which could be identified in all groups with high consistency (mean r = 0.889 [SD = 0.116]). Analysis of dynamic parameters of these states showed a characteristic increase in the lifetime and frequency of a weakly connected FC state in patients with recent-onset depression (p < .0005) compared with the other groups and a common increase in the lifetime of an FC state characterized by high sensorimotor and cingulo-opercular connectivities in all patient groups compared with the healthy control group (p < .0002). Canonical correlation analysis revealed a mode that exhibited significant correlations between dFC parameters and clinical variables (r = 0.617, p < .0029), which was associated with positive psychosis symptom severity and several dFC parameters. CONCLUSIONS: Our findings indicate diagnosis-specific alterations of dFC and underline the potential of dynamic analysis to characterize disorders such as depression and psychosis and clinical risk states.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Psicóticos , Humanos , Masculino , Femenino , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/diagnóstico por imagen , Adulto , Adulto Joven , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Conectoma , Adolescente , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen
8.
Neuropsychopharmacology ; 49(3): 573-583, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37737273

RESUMEN

Cognitively impaired and spared patient subgroups were identified in psychosis and depression, and in clinical high-risk for psychosis (CHR). Studies suggest differences in underlying brain structural and functional characteristics. It is unclear whether cognitive subgroups are transdiagnostic phenomena in early stages of psychotic and affective disorder which can be validated on the neural level. Patients with recent-onset psychosis (ROP; N = 140; female = 54), recent-onset depression (ROD; N = 130; female = 73), CHR (N = 128; female = 61) and healthy controls (HC; N = 270; female = 165) were recruited through the multi-site study PRONIA. The transdiagnostic sample and individual study groups were clustered into subgroups based on their performance in eight cognitive domains and characterized by gray matter volume (sMRI) and resting-state functional connectivity (rsFC) using support vector machine (SVM) classification. We identified an impaired subgroup (NROP = 79, NROD = 30, NCHR = 37) showing cognitive impairment in executive functioning, working memory, processing speed and verbal learning (all p < 0.001). A spared subgroup (NROP = 61, NROD = 100, NCHR = 91) performed comparable to HC. Single-disease subgroups indicated that cognitive impairment is stronger pronounced in impaired ROP compared to impaired ROD and CHR. Subgroups in ROP and ROD showed specific symptom- and functioning-patterns. rsFC showed superior accuracy compared to sMRI in differentiating transdiagnostic subgroups from HC (BACimpaired = 58.5%; BACspared = 61.7%, both: p < 0.01). Cognitive findings were validated in the PRONIA replication sample (N = 409). Individual cognitive subgroups in ROP, ROD and CHR are more informative than transdiagnostic subgroups as they map onto individual cognitive impairment and specific functioning- and symptom-patterns which show limited overlap in sMRI and rsFC. CLINICAL TRIAL REGISTRY NAME: German Clinical Trials Register (DRKS). Clinical trial registry URL: https://www.drks.de/drks_web/ . Clinical trial registry number: DRKS00005042.


Asunto(s)
Disfunción Cognitiva , Trastornos Psicóticos , Femenino , Humanos , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico , Función Ejecutiva , Sustancia Gris/diagnóstico por imagen , Trastornos Psicóticos/complicaciones , Trastornos Psicóticos/diagnóstico , Masculino , Estudios Multicéntricos como Asunto
9.
J Am Chem Soc ; 146(1): 62-67, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38134034

RESUMEN

Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity. Therefore, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop chemical inhibitors for helicases, enzymes with high conformational dynamics. We envisioned that electrophilic "scout fragments", which have been used in chemical proteomic studies, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest an approach to discover covalent inhibitor starting points and druggable allosteric sites in conformationally dynamic mechanoenzymes.


Asunto(s)
ADN Helicasas , Proteómica , Humanos , ADN Helicasas/química , ADN/química
11.
Acta Neuropathol Commun ; 11(1): 180, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957721

RESUMEN

BACKGROUND: Despite the presence of significant cortical pTDP-43 inclusions of heterogeneous morphologies in patients diagnosed with amyotrophic lateral sclerosis (ALS), pathological subclassification is routinely performed in the minority of patients with concomitant frontotemporal dementia (FTD). OBJECTIVE: In order to improve current understanding of the presence and relevance of pathological pTDP-43 subtypes in ALS, the present study examined the pattern of cortical pTDP-43 aggregates in 61 ALS cases without FTD. RESULTS: Based on the presence, morphology and composition of pTDP-43 pathology, three distinct ALS-TDP subtypes were delineated: (1) A predominant pattern of pTDP-43 granulofilamentous neuronal inclusions (GFNIs) and grains that were immuno-negative for p62 was identified in 18% of cases designated ALS-TDP type E; (2) neuronal cytoplasmic inclusions (NCIs) that were immuno-positive for both pTDP-43 and p62 were observed in 67% of cases assigned ALS-TDP type B; and (3) scarce cortical pTDP-43 and p62 aggregates were identified in 15% of cases coined ALS-TDP type SC (scarce cortical). Quantitative analyses revealed a significantly greater burden of pTDP-43 GFNI and grains in ALS-TDP type E. Principal component analysis demonstrated significant relationships between GFNIs, grains and ALS-TDP subtypes to support the distinction of subtypes E and B. No significant difference in age at death or disease duration was found between ALS-TDP subgroups to suggest that these subtypes represent earlier or later stages of the same disease process. Instead, a significantly higher ALS-TDP stage, indicating greater topographical spread of pTDP-43, was identified in ALS-TDP type E. Alzheimer's disease neuropathological change (ABC score ≥ intermediate) and Lewy body disease (Braak stage ≥ IV) was more prevalent in the ALS-TDP type SC cohort, which also demonstrated a significantly lower overall cognitive score. CONCLUSION: In summary, the present study demonstrates that ALS-TDP does not represent a single homogenous neuropathology. We propose the subclassification of ALS-TDP into three distinct subtypes using standard immuno-stains for pTDP-43 and p62 in the motor cortex, which is routinely sampled and evaluated for diagnostic neuropathological characterisation of ALS. We propose that future studies specify both clinicopathological group and pTDP-43 subtype to advance current understanding of the pathogenesis of clinical phenotypes in pTDP-43 proteinopathies, which will have significant relevance to the development of targeted therapies for this heterogeneous disorder.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/patología , Proteínas de Unión al ADN/genética , Neuronas/patología , Fenotipo
12.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808858

RESUMEN

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N-terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5'-cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated. Here we determine high-resolution cryo-electron microscopy structures of catalytic intermediates for the NMPylation and deRNAylation/capping reactions, revealing diverse nucleotide binding poses and divalent metal ion coordination sites to promote its repertoire of activities. The deRNAylation/capping structure explains why GDP is a preferred substrate for the capping reaction over GTP. Altogether, these findings enhance our understanding of the promiscuous coronaviral NiRAN domain, a therapeutic target, and provide an accurate structural platform for drug development.

13.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808863

RESUMEN

Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as genome replication and maintenance, ribosome assembly and translation. Helicases with essential functions only in certain cancer cells have been identified and helicases expressed by certain viruses are required for their pathogenicity. As a result, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop selective chemical inhibitors for helicases, enzymes with highly dynamic conformations. We envisioned that electrophilic 'scout fragments', which have been used for chemical proteomic based profiling, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest a covalent inhibitor discovery approach to target helicases and potentially other conformationally dynamic mechanoenzymes.

14.
Mol Cell ; 83(21): 3921-3930.e7, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37890482

RESUMEN

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5' cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated. Here, we determine high-resolution cryoelectron microscopy (cryo-EM) structures of catalytic intermediates for the NMPylation and deRNAylation/capping reactions, revealing diverse nucleotide binding poses and divalent metal ion coordination sites to promote its repertoire of activities. The deRNAylation/capping structure explains why GDP is a preferred substrate for the capping reaction over GTP. Altogether, these findings enhance our understanding of the promiscuous coronaviral NiRAN domain, a therapeutic target, and provide an accurate structural platform for drug development.


Asunto(s)
COVID-19 , Nucleotidiltransferasas , Humanos , Nucleotidiltransferasas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Microscopía por Crioelectrón , ARN Viral/genética
15.
Neuropathol Appl Neurobiol ; 49(6): e12943, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37818590

RESUMEN

AIM: Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative disease with limited therapeutic options. A key factor limiting the development of effective therapeutics is the lack of disease biomarkers. We sought to assess whether biomarkers for diagnosis, prognosis or cohort stratification could be identified by RNA sequencing (RNA-seq) of ALS patient peripheral blood. METHODS: Whole blood RNA-seq data were generated for 96 Australian sporadic ALS (sALS) cases and 48 healthy controls (NCBI GEO accession GSE234297). Differences in sALS-control gene expression, transcript usage and predicted leukocyte proportions were assessed, with pathway analysis used to predict the activity state of biological processes. Weighted Gene Co-expression Network Analysis (WGCNA) and machine learning algorithms were applied to search for diagnostic and prognostic gene expression patterns. Unsupervised clustering analysis was employed to determine whether sALS patient subgroups could be detected. RESULTS: Two hundred and forty-five differentially expressed genes were identified in sALS patients relative to controls, with enrichment of immune, metabolic and stress-related pathways. sALS patients also demonstrated switches in transcript usage across a small set of genes. We established a classification model that distinguished sALS patients from controls with an accuracy of 78% (sensitivity: 79%, specificity: 75%) using the expression of 20 genes. Clustering analysis identified four patient subgroups with gene expression signatures and immune cell proportions reflective of distinct peripheral effects. CONCLUSIONS: Our findings suggest that peripheral blood RNA-seq can identify diagnostic biomarkers and distinguish molecular subtypes of sALS patients however, its prognostic value requires further investigation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Australia , Biomarcadores , Análisis de Secuencia de ARN
16.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37721093

RESUMEN

Axin (also known as AXIN1) is a central negative regulator of the proto-oncogenic Wnt/ß-catenin signaling pathway, as axin condensates provide a scaffold for the assembly of a multiprotein complex degrading ß-catenin. Axin, in turn, is degraded through tankyrase. Consequently, tankyrase small-molecule inhibitors block Wnt signaling by stabilizing axin, revealing potential for cancer therapy. Here, we discovered that axin is phosphorylated by casein kinase 1 alpha 1 (CSNK1A1, also known as CK1α) at an N-terminal casein kinase 1 consensus motif, and that this phosphorylation is antagonized by the catalytic subunit alpha of protein phosphatase 1 (PPP1CA, hereafter referred to as PP1). Axin condensates promoted phosphorylation by enriching CK1α over PP1. Importantly, the phosphorylation took place within the tankyrase-binding site, electrostatically and/or sterically hindering axin-tankyrase interaction, and counteracting tankyrase-mediated degradation of axin. Thus, the presented data propose a novel mechanism regulating axin stability, with implications for Wnt signaling, cancer therapy and self-organization of biomolecular condensates.


Asunto(s)
Neoplasias , Tanquirasas , Humanos , Proteína Axina/metabolismo , Fosforilación , Tanquirasas/metabolismo , Condensados Biomoleculares , beta Catenina/metabolismo , Vía de Señalización Wnt
17.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333354

RESUMEN

Methyl-CpG-binding protein 2 (MeCP2) is an essential chromatin-binding protein whose mutations cause Rett syndrome (RTT), a leading cause of monogenic intellectual disabilities in females. Despite its significant biomedical relevance, the mechanism by which MeCP2 navigates the chromatin epigenetic landscape to regulate chromatin structure and gene expression remains unclear. Here, we used correlative single-molecule fluorescence and force microscopy to directly visualize the distribution and dynamics of MeCP2 on a variety of DNA and chromatin substrates. We found that MeCP2 exhibits differential diffusion dynamics when bound to unmethylated and methylated bare DNA. Moreover, we discovered that MeCP2 preferentially binds nucleosomes within the context of chromatinized DNA and stabilizes them from mechanical perturbation. The distinct behaviors of MeCP2 at bare DNA and nucleosomes also specify its ability to recruit TBLR1, a core component of the NCoR1/2 co-repressor complex. We further examined several RTT mutations and found that they disrupt different aspects of the MeCP2-chromatin interaction, rationalizing the heterogeneous nature of the disease. Our work reveals the biophysical basis for MeCP2's methylation-dependent activities and suggests a nucleosome-centric model for its genomic distribution and gene repressive functions. These insights provide a framework for delineating the multifaceted functions of MeCP2 and aid in our understanding of the molecular mechanisms of RTT.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37343661

RESUMEN

BACKGROUND: Formal thought disorder (FThD) is a core feature of psychosis, and its severity and long-term persistence relates to poor clinical outcomes. However, advances in developing early recognition and management tools for FThD are hindered by a lack of insight into the brain-level predictors of FThD states and progression at the individual level. METHODS: Two hundred thirty-three individuals with recent-onset psychosis were drawn from the multisite European Prognostic Tools for Early Psychosis Management study. Support vector machine classifiers were trained within a cross-validation framework to separate two FThD symptom-based subgroups (high vs. low FThD severity), using cross-sectional whole-brain multiband fractional amplitude of low frequency fluctuations, gray matter volume and white matter volume data. Moreover, we trained machine learning models on these neuroimaging readouts to predict the persistence of high FThD subgroup membership from baseline to 1-year follow-up. RESULTS: Cross-sectionally, multivariate patterns of gray matter volume within the salience, dorsal attention, visual, and ventral attention networks separated the FThD severity subgroups (balanced accuracy [BAC] = 60.8%). Longitudinally, distributed activations/deactivations within all fractional amplitude of low frequency fluctuation sub-bands (BACslow-5 = 73.2%, BACslow-4 = 72.9%, BACslow-3 = 68.0%), gray matter volume patterns overlapping with the cross-sectional ones (BAC = 62.7%), and smaller frontal white matter volume (BAC = 73.1%) predicted the persistence of high FThD severity from baseline to follow-up, with a combined multimodal balanced accuracy of BAC = 77%. CONCLUSIONS: We report the first evidence of brain structural and functional patterns predictive of FThD severity and persistence in early psychosis. These findings open up avenues for the development of neuroimaging-based diagnostic, prognostic, and treatment options for the early recognition and management of FThD and associated poor outcomes.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Psicóticos , Humanos , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen
19.
Parasit Vectors ; 16(1): 205, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337221

RESUMEN

BACKGROUND: Vector bionomics are important aspects of vector-borne disease control programs. Mosquito-biting risks are affected by environmental, mosquito behavior and human factors, which are important for assessing exposure risk and intervention impacts. This study estimated malaria transmission risk based on vector-human interactions in northern Ghana, where indoor residual spraying (IRS) and insecticide-treated nets (ITNs) have been deployed. METHODS: Indoor and outdoor human biting rates (HBRs) were measured using monthly human landing catches (HLCs) from June 2017 to April 2019. Mosquitoes collected were identified to species level, and Anopheles gambiae sensu lato (An. gambiae s.l.) samples were examined for parity and infectivity. The HBRs were adjusted using mosquito parity and human behavioral observations. RESULTS: Anopheles gambiae was the main vector species in the IRS (81%) and control (83%) communities. Indoor and outdoor HBRs were similar in both the IRS intervention (10.6 vs. 11.3 bites per person per night [b/p/n]; z = -0.33, P = 0.745) and control communities (18.8 vs. 16.4 b/p/n; z = 1.57, P = 0.115). The mean proportion of parous An. gambiae s.l. was lower in IRS communities (44.6%) than in control communities (71.7%). After adjusting for human behavior observations and parity, the combined effect of IRS and ITN utilization (IRS: 37.8%; control: 57.3%) on reducing malaria transmission risk was 58% in IRS + ITN communities and 27% in control communities with ITNs alone (z = -4.07, P < 0.001). However, this also revealed that about 41% and 31% of outdoor adjusted bites in IRS and control communities respectively, occurred before bed time (10:00 pm). The mean directly measured annual entomologic inoculation rates (EIRs) during the study were 6.1 infective bites per person per year (ib/p/yr) for IRS communities and 16.3 ib/p/yr for control communities. After considering vector survival and observed human behavior, the estimated EIR for IRS communities was 1.8 ib/p/yr, which represents about a 70% overestimation of risk compared to the directly measured EIR; for control communities, it was 13.6 ib/p/yr (16% overestimation). CONCLUSION: Indoor residual spraying significantly impacted entomological indicators of malaria transmission. The results of this study indicate that vector bionomics alone do not provide an accurate assessment of malaria transmission exposure risk. By accounting for human behavior parameters, we found that high coverage of ITNs alone had less impact on malaria transmission indices than combining ITNs with IRS, likely due to observed low net use. Reinforcing effective communication for behavioral change in net use and IRS could further reduce malaria transmission.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Humanos , Ghana/epidemiología , Mosquitos Vectores , Control de Mosquitos/métodos , Malaria/epidemiología , Malaria/prevención & control , Insecticidas/farmacología
20.
Sci Adv ; 9(18): eade2044, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146135

RESUMEN

Pathogenic short tandem repeat (STR) expansions cause over 20 neurodegenerative diseases. To determine the contribution of STRs in sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), we used ExpansionHunter, REviewer, and polymerase chain reaction validation to assess 21 neurodegenerative disease-associated STRs in whole-genome sequencing data from 608 patients with sporadic ALS, 68 patients with sporadic FTD, and 4703 matched controls. We also propose a data-derived outlier detection method for defining allele thresholds in rare STRs. Excluding C9orf72 repeat expansions, 17.6% of clinically diagnosed ALS and FTD cases had at least one expanded STR allele reported to be pathogenic or intermediate for another neurodegenerative disease. We identified and validated 162 disease-relevant STR expansions in C9orf72 (ALS/FTD), ATXN1 [spinal cerebellar ataxia type 1 (SCA1)], ATXN2 (SCA2), ATXN8 (SCA8), TBP (SCA17), HTT (Huntington's disease), DMPK [myotonic dystrophy type 1 (DM1)], CNBP (DM2), and FMR1 (fragile-X disorders). Our findings suggest clinical and pathological pleiotropy of neurodegenerative disease genes and highlight their importance in ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Ataxias Espinocerebelosas , Humanos , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Ataxias Espinocerebelosas/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA