Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37571645

RESUMEN

In this paper, a model predictive control (MPC) approach for controlling automated vehicle steering during path tracking is presented. A (linear parameter-varying) LPV vehicle plant model including steering dynamics is proposed to determine the system evolution matrices. The steering dynamics are modeled in two different ways by using first-order lag and a second-order lag; the application of the first-order system resulted in a slightly more accurate path-following. Additionally, a cascade MPC structure is applied in which two MPCs are used; the second-order steering dynamics are separated from the path-following controller in a second MPC. Both steering system models and the cascade MPC are evaluated in simulation and on a test vehicle. The reference trajectory is calculated based on a fixed predefined path by transforming the necessary path segment to the vehicle ego coordinate system, thereby describing the reference for the path-following task in a novel way. The MPC method computes the optimal steering angle vector at each time step for following the path. The longitudinal dynamics is controlled separately by a PI controller. After simulation evaluation, experimental tests were conducted on a test vehicle on an asphalt surface. Both simulation and experimental results prove the effectiveness of the proposed reference definition method. The effect of the applied steering system models is evaluated. The inclusion of the steering dynamics in the prediction model resulted in a significant increase in controller performance. Finally, the computational requirements of the proposed control and modeling methods are also discussed.

2.
Sensors (Basel) ; 22(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35957363

RESUMEN

In this paper, a linear time-varying model predictive controller (LTV-MPC) is proposed for automated vehicle path-following applications. In the field of path following, the application of nonlinear MPCs is becoming more common; however, the major disadvantage of this algorithm is the high computational cost. During this research, the authors propose two methods to reduce the nonlinear terms: one is a novel method to define the path-following problem by transforming the path according to the actual state of the vehicle, while the other one is the application of a successive linearization technique to generate the state-space representation of the vehicle used for state prediction by the MPC. Furthermore, the dynamic effect of the steering system is examined as well by modeling the steering dynamics with a first-order lag. Using the proposed method, the necessary segment of the predefined path is transformed, the linearized model of the vehicle is calculated, and the optimal steering control vector is calculated for a finite horizon at every timestep. The longitudinal dynamics of the vehicle are controlled separately from the lateral dynamics by a PI cruise controller. The performance of the controller is evaluated and the effect of the steering model is examined as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA