Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12735, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830972

RESUMEN

In the present study, a new turbomolecular pump (TMP) performance prediction algorithm is proposed according to the variable surface combined blade row (VSCBR) geometric model. The simulation calculation program is designed to perform structural optimization and flow field analysis. Research on the pumping performance of the traditional straight blade row (TSBR) indicates that when the blade velocity ratio is greater than 1, the increase in the pumping speed and compression ratio of the TMP gradually tends to stabilize. Response surface methodology is used to optimize the structural parameters of the first four stages of the combined blade row. The optimized VSCBR increases the pumping speed by 18.2% compared to that of the TSBR. The flow field analysis based on the optimized VSCBR shows that gas molecules reaching the rear blades are likely to approach the outlet, and the proportion of gas molecules in this region exceeds 50%. Therefore, the blades we designed should be conducive to additional gas molecules reaching the outlet.

2.
Heliyon ; 10(5): e26994, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463827

RESUMEN

To meet the urgent need for a new design concept and solve the inaccuracy of existing performance prediction algorithms for high-speed turbomolecular pumps (TMPs), a new algorithm based on a novel twisted rotor blade is proposed. In this algorithm, the blade angle of the turbine rotor row progressively decreases from the root to the tip of the blade tooth. The feasibility and accuracy of the simulation algorithm were verified through experiments. The dependence of the simulation results on the number of simulated molecules was discussed. Both theoretical analysis and simulations confirmed the necessity of setting a twisted rotor blade in the turbine combined blade row. A comparative analysis on the performance of conventional straight-blade and twisted-blade structures based on the first-four stages of turbine combined blade rows of the F-63/55 TMP was conducted. The results indicated that the maximum pumping speed coefficient and maximum compression ratio of the optimised twisted-blade structure increased by 4.59% and 22.26%, respectively. This novel blade structure overcomes the limitations of the conventional straight-blade structure. Progressively decreasing the rotor blade angle from the root to the tip of the blade tooth is beneficial for improving the performance of TMPs. This study provides a new design concept and performance prediction algorithm for the structural optimisation of high-speed TMPs.

3.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112433

RESUMEN

In order to solve the problems of nonlinearity, uncertainty and coupling of multi-hydraulic cylinder group platform of a digging-anchor-support robot, as well as the lack of synchronization control accuracy of hydraulic synchronous motors, an improved Automatic Disturbance Rejection Controller-Improved Particle Swarm Optimization (ADRC-IPSO) position synchronization control method is proposed. The mathematical model of a multi-hydraulic cylinder group platform of a digging-anchor-support robot is established, the compression factor is used to replace the inertia weight, and the traditional Particle Swarm Optimization (PSO) algorithm is improved by using the genetic algorithm theory to improve the optimization range and convergence rate of the algorithm, and the parameters of the Active Disturbance Rejection Controller (ADRC) were adjusted online. The simulation results verify the effectiveness of the improved ADRC-IPSO control method. The experimental results show that, compared with the traditional ADRC, ADRC-PSO and PID controller, the improved ADRC-IPSO has better position tracking performance and shorter adjusting time, and its step signal synchronization error is controlled within 5.0 mm, and the adjusting time is less than 2.55 s, indicating that the designed controller has better synchronization control effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA