Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater Technol ; 9(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-39247925

RESUMEN

The rise in additive manufacturing (AM) offers myriad opportunities for 3D-printed polymeric vascular scaffolds, such as customization and on-the-spot manufacturing, in vivo biodegradation, incorporation of drugs to prevent restenosis, and visibility under X-ray. To maximize these benefits, informed scaffold design is critical. Polymeric bioresorbable vascular scaffolds (BVS) must undergo significant deformation prior to implantation in a diameter-reduction process known as crimping which enables minimally invasive surgery. Understanding the behavior of vascular scaffolds in this step provides twofold benefits: first, it ensures the BVS is able to accommodate stresses occurring during this process to prevent failure, and further, it provides information on the radial strength of the BVS, a key metric to understanding its post-implant performance in the artery. To capitalize on the fast manufacturing speed AM provides, a low time cost solution for understanding scaffold performance during this step is necessary. Through simulation of the BVS crimping process in ABAQUS using experimentally obtained bulk material properties, we have developed a qualitative analysis tool which is capable of accurately comparing relative performance trends of varying BVS designs during crimping in a fraction of the time of experimental testing, thereby assisting in the integration of informed design into the additive manufacturing process.

2.
Bioact Mater ; 41: 427-439, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39188380

RESUMEN

Approaches to regenerating bone often rely on integrating biomaterials and biological signals in the form of cells or cytokines. However, from a translational point of view, these approaches are challenging due to the sourcing and quality of the biologic, unpredictable immune responses, complex regulatory paths, and high costs. We describe a simple manufacturing process and a material-centric 3D-printed composite scaffold system (CSS) that offers distinct advantages for clinical translation. The CSS comprises a 3D-printed porous polydiolcitrate-hydroxyapatite composite elastomer infused with a polydiolcitrate-graphene oxide hydrogel composite. Using a micro-continuous liquid interface production 3D printer, we fabricate a precise porous ceramic scaffold with 60 wt% hydroxyapatite resembling natural bone. The resulting scaffold integrates with a thermoresponsive hydrogel composite in situ to fit the defect, which is expected to enhance surface contact with surrounding tissue and facilitate biointegration. The antioxidative properties of citrate polymers prevent long-term inflammatory responses. The CSS stimulates osteogenesis in vitro and in vivo. Within 4 weeks in a calvarial critical-sized bone defect model, the CSS accelerated ECM deposition (8-fold) and mineralized osteoid (69-fold) compared to the untreated. Through spatial transcriptomics, we demonstrated the comprehensive biological processes of CSS for prompt osseointegration. Our material-centric approach delivers impressive osteogenic properties and streamlined manufacturing advantages, potentially expediting clinical application for bone reconstruction surgeries.

3.
Res Sq ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39108474

RESUMEN

Composite cranial defects have individual functional and aesthetic ramifications, as well as societal burden, while posing significant challenges for reconstructive surgeons. Single-stage composite reconstruction of these deformities entail complex surgeries that bear many short- and long-term risks and complications. Current research on composite scalp-cranial defects is sparse and one-dimensional, often focusing solely on bone or skin. Thus, there is an unmet need for a simple, clinically relevant composite defect model in rodents, where there is a challenge in averting healing of the skin component via secondary intention. By utilizing a customizable (3D-printed) wound obturator, the scalp wound can be rendered non-healing for a long period (more than 6 weeks), with the cranial defect patent. The wound obturator shows minimal biotoxicity and will not cause severe endocranium-granulation adhesion. This composite defect model effectively slowed the scalp healing process and preserved the cranial defect, embodying the characteristics of a "chronic composite defect". In parallel, an autologous reconstruction model was established as the positive control. This positive control exhibited reproducible healing of the skin within 3 weeks with variable degrees of osseointegration, consistent with clinical practice. Both models provide a stable platform for subsequent research not only for composite tissue engineering and scaffold design but also for mechanistic studies of composite tissue healing.

4.
ACS Appl Mater Interfaces ; 16(34): 45422-45432, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39102678

RESUMEN

Implantable polymeric biodegradable devices, such as biodegradable vascular scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe a new radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2) consisting of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and molybdenum disulfide (MoS2) nanosheets. The composite was used as an ink with microcontinuous liquid interface production (µCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, with X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in phosphate-buffered saline solution, suggesting the potential for producing radiopaque, fully bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, such as vascular scaffolds, that require noninvasive X-ray-based monitoring techniques for implantation and evaluation. This innovative biomaterial composite system holds significant promise for the development of biocompatible, fluoroscopically visible medical implants, potentially enhancing patient outcomes and reducing medical complications.


Asunto(s)
Disulfuros , Molibdeno , Impresión Tridimensional , Andamios del Tejido , Molibdeno/química , Disulfuros/química , Andamios del Tejido/química , Implantes Absorbibles , Polímeros/química , Materiales Biocompatibles/química , Citratos/química , Animales
5.
Bioact Mater ; 38: 195-206, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38756202

RESUMEN

Fully bioresorbable vascular scaffolds (BVSs) aim to overcome the limitations of metallic drug-eluting stents (DESs). However, polymer-based BVSs, such as Abbott's Absorb, the only US FDA-approved BVS, have had limited use due to increased strut thickness (157 µm for Absorb), exacerbated tissue inflammation, and increased risk of major cardiac events leading to inferior clinical performance when compared to metallic DESs. Herein we report the development of a drug-eluting BVS (DE-BVS) through the innovative use of a photopolymerizable, citrate-based biomaterial and a high-precision additive manufacturing process. BVS with a clinically relevant strut thickness of 62 µm can be produced in a high-throughput manner, i.e. one BVS per minute, and controlled release of the anti-restenosis drug everolimus can be achieved by engineering the structure of polymer coatings to fabricate drug-eluting BVS. We achieved the successful deployment of BVSs and DE-BVSs in swine coronary arteries using a custom-built balloon catheter and BVS delivery system and confirmed BVS safety and efficacy regarding maintenance of vessel patency for 28 days, observing an inflammation profile for BVS and DE-BVS that was comparable to the commercial XIENCE™ DES (Abbott Vascular).

6.
Adv Mater ; 36(1): e2306691, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37680065

RESUMEN

Conductive hydrogels are promising materials with mixed ionic-electronic conduction to interface living tissue (ionic signal transmission) with medical devices (electronic signal transmission). The hydrogel form factor also uniquely bridges the wet/soft biological environment with the dry/hard environment of electronics. The synthesis of hydrogels for bioelectronics requires scalable, biocompatible fillers with high electronic conductivity and compatibility with common aqueous hydrogel formulations/resins. Despite significant advances in the processing of carbon nanomaterials, fillers that satisfy all these requirements are lacking. Herein, intrinsically dispersible acid-crystalized PEDOT:PSS nanoparticles (ncrys-PEDOTX ) are reported which are processed through a facile and scalable nonsolvent induced phase separation method from commercial PEDOT:PSS without complex instrumentation. The particles feature conductivities of up to 410 S cm-1 , and when compared to other common conductive fillers, display remarkable dispersibility, enabling homogeneous incorporation at relatively high loadings within diverse aqueous biomaterial solutions without additives or surfactants. The aqueous dispersibility of the ncrys-PEDOTX particles also allows simple incorporation into resins designed for microstereolithography without sonication or surfactant optimization; complex biomedical structures with fine features (< 150 µm) are printed with up to 10% particle loading . The ncrys-PEDOTX particles overcome the challenges of traditional conductive fillers, providing a scalable, biocompatible, plug-and-play platform for soft organic bioelectronic materials.

7.
bioRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961598

RESUMEN

The rise in additive manufacturing (AM) offers myriad opportunities for 3D-printed polymeric vascular scaffolds, such as customization and on-the-spot manufacturing, in vivo biodegradation, incorporation of drugs to prevent restenosis, and visibility under X-ray. To maximize these benefits, informed scaffold design is critical. Polymeric bioresorbable vascular scaffolds (BVS) must undergo significant deformation prior to implantation in a diameter-reduction process known as crimping which enables minimally invasive surgery. Understanding the behavior of vascular scaffolds in this step provides twofold benefits: first, it ensures the BVS is able to accommodate stresses occurring during this process to prevent failure, and further, it provides information on the radial strength of the BVS, a key metric to understanding its post-implant performance in the artery. To capitalize on the fast manufacturing speed AM provides, a low time cost solution for understanding scaffold performance during this step is necessary. Through simulation of the BVS crimping process in ABAQUS using experimentally obtained bulk material properties, we have developed a qualitative analysis tool which is capable of accurately comparing relative performance trends of varying BVS designs during crimping in a fraction of the time of experimental testing, thereby assisting in the integration of informed design into the additive manufacturing process.

8.
Adv Healthc Mater ; 11(23): e2201955, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36168854

RESUMEN

Bioresorbable stents (BRS) hold great promise for the treatment of many life-threatening luminal diseases. Tracking and monitoring of stents in vivo is critical for avoiding their malposition and inadequate expansion, which often leads to complications and stent failure. However, obtaining high X-ray visibility of polymeric BRS has been challenging because of their intrinsic radiolucency. This study demonstrates the use of photopolymerization-based 3D printing technique to fabricate radiopaque BRS by incorporating iodixanol, a clinical contrast agent, into a bioresorbable citrate-based polymer ink. The successful volumetric dispersion of the iodixanol through the 3D-printing process confers strong X-ray visibility of the produced BRS. Following in vitro degradation, the 3D-printed BRS embedded in chicken muscle maintains high X-ray visibility for at least 4 weeks. Importantly, the 3D-printed radiopaque BRS demonstrates good cytocompatibility and strong mechanical competence in crimping and expansion, which is essential for minimally invasive stent deployment. In addition, it is found that higher loading concentrations of iodixanol, e.g. 10 wt.%, results in more strut fractures in stent crimping and expansion. To conclude, this study introduces a facile strategy to fabricate radiopaque BRS through the incorporation of iodixanol in the 3D printing process, which could potentially increase the clinical success of BRS.

9.
Macromol Biosci ; 22(8): e2200103, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35596668

RESUMEN

3D-printed hydrogel scaffolds functionalized with conductive polymers have demonstrated significant potential in regenerative applications for their structural tunability, physiochemical compatibility, and electroactivity. Controllably generating conductive hydrogels with fine features, however, has proven challenging. Here, micro-continuous liquid interface production (µCLIP) method is utilized to 3D print poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels. With a unique in-situ polymerization approach, a sulfonated monomer is first incorporated into the hydrogel matrix and subsequently polymerized into a conjugated polyelectrolyte, poly(4-(2,3-dihydro-thieno[3,4-b][1,4]dioxin-2-ylmethoxy)-butane-1 sulfonic acid sodium salt (PEDOT-S). Rod structures are fabricated at different crosslinking levels to investigate PEDOT-S incorporation and its effect on bulk hydrogel electronic and mechanical properties. After demonstrating that PEDOT-S does not significantly compromise the structures of the bulk material, pHEMA scaffolds are fabricated via µCLIP with features smaller than 100 µm. Scaffold characterization confirms PEDOT-S incorporation bolstered conductivity while lowering overall modulus. Finally, C2C12 myoblasts are seeded on PEDOT-pHEMA structures to verify cytocompatibility and the potential of this material in future regenerative applications. PEDOT-pHEMA scaffolds promote increased cell viability relative to their non-conductive counterparts and differentially influence cell organization. Taken together, this study presents a promising new approach for fabricating complex conductive hydrogel structures for regenerative applications.


Asunto(s)
Hidrogeles , Polihidroxietil Metacrilato , Conductividad Eléctrica , Hidrogeles/química , Hidrogeles/farmacología , Mioblastos , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA