Your browser doesn't support javascript.
loading
Polydiolcitrate-MoS2 Composite for 3D Printing Radio-Opaque, Bioresorbable Vascular Scaffolds.
Szydlowska, Beata M; Ding, Yonghui; Moore, Connor; Cai, Zizhen; Torres-Castanedo, Carlos G; Collins, Caralyn P; Jones, Evan; Hersam, Mark C; Sun, Cheng; Ameer, Guillermo A.
Afiliación
  • Szydlowska BM; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Ding Y; Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States.
  • Moore C; Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States.
  • Cai Z; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Torres-Castanedo CG; Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States.
  • Collins CP; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Jones E; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Hersam MC; Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States.
  • Sun C; Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Ameer GA; Center for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States.
ACS Appl Mater Interfaces ; 16(34): 45422-45432, 2024 Aug 28.
Article en En | MEDLINE | ID: mdl-39102678
ABSTRACT
Implantable polymeric biodegradable devices, such as biodegradable vascular scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe a new radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2) consisting of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and molybdenum disulfide (MoS2) nanosheets. The composite was used as an ink with microcontinuous liquid interface productionCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, with X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in phosphate-buffered saline solution, suggesting the potential for producing radiopaque, fully bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, such as vascular scaffolds, that require noninvasive X-ray-based monitoring techniques for implantation and evaluation. This innovative biomaterial composite system holds significant promise for the development of biocompatible, fluoroscopically visible medical implants, potentially enhancing patient outcomes and reducing medical complications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Citratos / Nanoestructuras / Disulfuros / Andamios del Tejido / Procedimientos Endovasculares / Molibdeno Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Citratos / Nanoestructuras / Disulfuros / Andamios del Tejido / Procedimientos Endovasculares / Molibdeno Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos