Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2835: 49-57, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105905

RESUMEN

Dental pulp stem cells (DPSCs) are a promising alternative to the source of mesenchymal stem cells (MSCs), as they are readily available in minimally invasive procedures compared to more invasive methods associated with harvesting other MSCs sources. Despite the encouraging pre-clinical outcomes in animal disease models, culture-expanding procedures are needed to obtain a sufficient number of MSCs required for delivery to the damaged site. However, this contributes to increasing regulatory difficulties in translating stem cells and tissue engineering therapy to clinical use. Moreover, discussions continue as to which isolation method is to be preferred when obtaining DPSCs from extracted molars. This protocol describes a simple explant isolation technique of human dental pulp stem cells from the dental pulp of permanent teeth based upon the plastic adherence of MSCs and subsequent outgrowth of cells out of tissue fragments with high efficacy.


Asunto(s)
Separación Celular , Pulpa Dental , Células Madre Mesenquimatosas , Pulpa Dental/citología , Humanos , Separación Celular/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre/citología , Células Cultivadas , Dentición Permanente , Ingeniería de Tejidos/métodos
2.
Methods Mol Biol ; 2835: 301-306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105925

RESUMEN

Magnesium, an essential mineral for various physiological functions, is subject to tight regulation within the body. Understanding its absorption across epithelial cell monolayers is crucial for optimizing dietary magnesium intake and therapeutic strategies. The Caco-2 monolayer model, widely recognized for its relevance to the human intestinal epithelium, provides a suitable platform for this investigation. This protocol covers the step-by-step procedures for the cultivation of Caco-2 monolayer preparation of transwell systems. It provides guidance on the setup of magnesium transport experiments, which involve the application of magnesium salts to the apical side of the Caco-2 monolayer and monitoring their transport to the basolateral side.


Asunto(s)
Mucosa Intestinal , Magnesio , Humanos , Células CACO-2 , Mucosa Intestinal/metabolismo , Magnesio/metabolismo , Permeabilidad , Transporte Biológico , Técnicas de Cultivo de Célula/métodos , Absorción Intestinal/efectos de los fármacos , Sales (Química)/metabolismo
3.
Medicina (Kaunas) ; 60(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792973

RESUMEN

Background and Objectives: Stem cell-based regeneration strategies have shown therapeutic efficacy in various fields of regenerative medicine. These include bone healing after bone augmentation, often complicated by pain, which is managed by using nonsteroidal anti-inflammatory drugs (NSAIDs). However, information is limited about how NSAIDs affect the therapeutic potential of stem cells. Materials and Methods: We investigated the effects of ibuprofen and diclofenac on the characteristics, morphology, and immunophenotype of human mesenchymal stromal cells isolated from the dental pulp (DPSCs) and cultured in vitro, as well as their effects on the expression of angiogenic growth factors (VEGFA and HGF) and selected genes in apoptosis signalling pathways (BAX, BAK, CASP3, CASP9, and BCL2). Results: Ibuprofen and diclofenac significantly reduced the viability of DPSCs, while the expression of mesenchymal stem cell surface markers was unaffected. Both ibuprofen and diclofenac treatment significantly upregulated the expression of HGF, while the expression of VEGFA remained unchanged. Ibuprofen significantly altered the expression of several apoptosis-related genes, including the upregulation of CASP9 and BCL2, with decreased CASP3 expression. BAK, CASP3, CASP9, and BCL2 expressions were significantly increased in the diclofenac-treated DPSCs, while no difference was demonstrated in BAX expression. Conclusions: Our results suggest that concomitant use of the NSAIDs ibuprofen or diclofenac with stem cell therapy may negatively impact cell viability and alter the expression of apoptosis-related genes, affecting the efficacy of stem cell therapy.


Asunto(s)
Apoptosis , Supervivencia Celular , Pulpa Dental , Diclofenaco , Ibuprofeno , Humanos , Pulpa Dental/efectos de los fármacos , Pulpa Dental/citología , Diclofenaco/farmacología , Apoptosis/efectos de los fármacos , Ibuprofeno/farmacología , Supervivencia Celular/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Células Madre/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Cultivadas
4.
Biomedicines ; 12(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38672276

RESUMEN

BACKGROUND: The present study investigated the outcomes and possible predictive factors of autologous bone marrow cells (BMCs) therapy in patients with "no-option" critical limb ischaemia (CLI). It was focused on exploring the clinical background and prior statin and renin-angiotensin system (RAS)-acting agents pharmacotherapy related to the therapeutic efficacy of BMCs treatment. METHODS: In the present study, we reviewed thirty-three patients (mean age 64.9 ± 10 years; 31 males) with advanced CLI after failed or impossible revascularisation, who were treated with 40 mL of autologous BMCs by local intramuscular application. Patients with limb salvage and wound healing (N = 22) were considered as responders to BMCs therapy, and patients with limb salvage and complete ischemic wound healing (N = 13) were defined as super-responders. Logistic regression models were used to screen and identify the prognostic factors, and a receiver operating characteristics (ROC) curve, a linear regression, and a survival curve were drawn to determine the predictive accuracy, the correlation between the candidate predictors, and the risk of major amputation. RESULTS: Based on the univariate regression analysis, baseline C-reactive protein (CRP) and transcutaneous oxygen pressure (TcPO2) values were identified as prognostic factors of the responders, while CRP value, ankle-brachial index (ABI), and bone marrow-derived mononuclear cells (BM-MNCs) concentration were identified as prognostic factors of the super-responders. An area under the ROC curve of 0.768 indicated good discrimination for CRP > 8.1 mg/L before transplantation as a predictive factor for negative clinical response. Linear regression analysis revealed a significant dependence between the levels of baseline CRP and the concentration of BM-MNCs in transplanted bone marrow. Patients taking atorvastatin before BMCs treatment (N = 22) had significantly improved TcPO2 and reduced pain scale after BMCs transplant, compared to the non-atorvastatin group. Statin treatment was associated with reduced risk for major amputation. However, the difference was not statistically significant. Statin use was also associated with a significantly higher concentration of BM-MNCs in the transplanted bone marrow compared to patients without statin treatment. Patients treated with RAS-acting agents (N = 20) had significantly reduced pain scale after BMCs transplant, compared to the non-RAS-acting agents group. Similar results, reduced pain scale and improved TcPO2, were achieved in patients treated with atorvastatin and RAS-acting agents (N = 17) before BMCs treatment. Results of the Spearman correlation showed a significant positive correlation between CLI regression, responders, and previous therapy before BMCs transplant with RAS-acting agents alone or with atorvastatin. CONCLUSIONS: CRP and TcPO2 were prognostic factors of the responders, while CRP value, ABI, and BM-MNCs concentration were identified as predictive factors of the super-responders. Atorvastatin treatment was associated with a significantly increased concentration of BM-MNCs in bone marrow concentrate and higher TcPO2 and lower pain scale after BMCs treatment in CLI patients. Similarly, reduced pain scales and improved TcPO2 were achieved in patients treated with atorvastatin and RAS-acting agents before BMCs treatment. Positive correlations between responders and previous treatment before BMCs transplant with RAS-acting agents alone or with atorvastatin were significant.

5.
Curr Issues Mol Biol ; 45(3): 2326-2337, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36975520

RESUMEN

Stem cell transplantation represents a unique therapeutic tool in tissue engineering and regenerative medicine. However, it was shown that the post-injection survival of stem cells is poor, warranting a more comprehensive understanding of activated regenerative pathways. Numerous studies indicate that statins improve the therapeutic efficacy of stem cells in regenerative medicine. In the present study, we investigated the effect of the most widely prescribed statin, atorvastatin, on the characteristics and properties of bone-marrow-derived mesenchymal stem cells (BM-MSCs) cultured in vitro. We found that atorvastatin did not decrease the viability of BM-MSCs, nor did it change the expression of MSC cell surface markers. Atorvastatin upregulated the mRNA expression levels of VEGF-A and HGF, whereas the mRNA expression level of IGF-1 was decreased. In addition, the PI3K/AKT signaling pathway was modulated by atorvastatin as indicated by the high mRNA expression levels of PI3K and AKT. Moreover, our data revealed the upregulation of mTOR mRNA levels; however, no change was observed in the BAX and BCL-2 transcripts. We propose that atorvastatin benefits BM-MSC treatment due to its ability to upregulate angiogenesis-related genes expression and transcripts of the PI3K/AKT/mTOR pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA