Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Transl Radiat Oncol ; 48: 100837, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39224663

RESUMEN

This study evaluates the benefit of weekly delineation and peer review by a multidisciplinary team (MDT) of radiation oncologists (ROs), radiologists (RXs), and nuclear medicine (NM) physicians in defining primary and lymph node tumor volumes (GTVp and GTVn) for head and neck cancer (HNC) radiotherapy. This study includes 30 consecutive HNC patients referred for definitive curative (chemo)-radiotherapy. Imaging data including head and neck MRI, [18F]-FDG-PET and CT scan were evaluated by the MDT. The RO identified the 'undeniable' tumor as GTVp_core and determined GTVp_max, representing the maximum tumoral volume. The MDT delineation (MDT-D) by RX and NM physicians outlined their respective primary GTVs (GTVp_RX and GTVp_NM). During the MDT meeting (MDT-M), these contours were discussed to reach a consensus on the final primary GTV (GTVp_final). In the comparative analysis of various GTVp delineations, we performed descriptive statistics and assessed two MDT-M factors: 1) the added value of MDT-M, which includes the section of GTVp_final outside GTVp_core but within GTVp_RX or GTVp_NM, and 2) the part of GTVp_final that deviates from GTVp_max, representing the area missed by the RO. For GTVn, discussions evaluated lymph node extent and malignancy, documenting findings and the frequency of disagreements. The average GTVp core and max volumes were 19.5 cc (range: 0.4-90.1) and 22.1 cc (range: 0.8-106.2), respectively. Compared to GTVp_core, MDT-D to GTVp_final added an average of 3.3 cc (range: 0-25.6) and spared an average of 1.3 cc (0-15.6). Compared to GTVp_max, MDT-D and -M added an average of 2.7 cc (range: 0-20.3) and removed 2.3 cc (0-21.3). The most frequent GTVn discussions included morphologically suspicious nodes not fixing on [18F]-FDG-PET and small [18F]-FDG-PET negative retropharyngeal lymph nodes. Multidisciplinary review of target contours in HNC is essential for accurate treatment planning, ensuring precise tumor and lymph node delineation, potentially improving local control and reducing toxicity.

2.
Phys Imaging Radiat Oncol ; 28: 100479, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37694265

RESUMEN

Background and purpose: 4D Computed Tomography (4DCT) technology captures the location and movement of tumors and nearby organs at risk over time. In this study, a multi-institutional multi-vendor 4DCT audit was initiated to assess the accuracy of current imaging protocols. Materials and methods: Twelve centers, including thirteen scanners performed a 4DCT acquisition of a dynamic thorax phantom using the institution's own protocol with the in-house breathing monitoring system. Five regular and three irregular breathing patterns were used. Image acquisition and reconstruction were followed by automated image analysis with our in-house developed 4DCT QA program (QAMotion). CT number accuracy, volume deviation, amplitude deviation, and spatial integrity were assessed per pattern using both the segmented volumes and line profiles. Results: Regular breathing curves showed relatively accurate results across all institutions, with mean volume and CT number deviations and median amplitude deviation below 2%, 5 HU and 2 mm, respectively. Results obtained for irregular patterns showed more variation across the institutions. Volume and CT number deviations co-occurred with a blurring of the sphere, interpolation, or double-structure artifacts that were confirmed through the line profiles. For some of the irregular patterns, amplitude deviations up to 6 mm were observed. Maximum Intensity Projection (MaxIP) correctly captured the applied motion amplitude with deviations across all institutions within 2 mm except for double amplitude pattern. Conclusions: All centers invited to participate in the audit responded positively, highlighting the need for a comprehensive yet easy-to-execute 4DCT quality assurance program. The largest variances between the results from one institution to another confirmed that a standardized 4DCT audit is warranted.

3.
Phys Imaging Radiat Oncol ; 27: 100475, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37560513

RESUMEN

This study aimed to develop and validate a comprehensive, reproducible and automatic 4DCT Quality Assurance (QA) workflow (QAMotion) that evaluates image accuracy across various regular and irregular breathing patterns. Volume and amplitude deviations, CT number accuracy, and spatial integrity were used as evaluation metrics. For repeatability tests, tolerances were respected with a mean CT number deviation < 10 HU, volume deviation < 2% and diameter and amplitude deviation < 2 mm except for irregular amplitude curves for which an amplitude deviation up to 6 mm was measured. QAMotion was able to flag image artefacts for our clinical 4DCT system.

5.
EJNMMI Phys ; 7(1): 75, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33315160

RESUMEN

BACKGROUND: The relationship between the mean absorbed dose delivered to the tumour and the outcome in liver metastases from colorectal cancer patients treated with radioembolization has already been presented in several studies. The optimization of the personalized therapeutic activity to be administered is still an open challenge. In this context, how well the 99mTc-MAA SPECT/CT predicts the absorbed dose delivered by radioembolization is essential. This work aimed to analyse the differences between predictive 99mTc-MAA-SPECT/CT and post-treatment 90Y-microsphere PET/CT dosimetry at different levels. Dose heterogeneity was compared voxel-to-voxel using the quality-volume histograms, subsequently used to demonstrate how it could be used to identify potential clinical parameters that are responsible for quantitative discrepancies between predictive and post-treatment dosimetry. RESULTS: We analysed 130 lesions delineated in twenty-six patients. Dose-volume histograms were computed from predictive and post-treatment dosimetry for all volumes: individual lesion, whole tumoural liver (TL) and non-tumoural liver (NTL). For all dose-volume histograms, the following indices were extracted: D90, D70, D50, Dmean and D20. The results showed mostly no statistical differences between predictive and post-treatment dosimetries across all volumes and for all indices. Notably, the analysis showed no difference in terms of Dmean, confirming the results from previous studies. Quality factors representing the spread of the quality-volume histogram (QVH) curve around 0 (ideal QF = 0) were determined for lesions, TL and NTL. QVHs were classified into good (QF < 0.18), acceptable (0.18 ≤ QF < 0.3) and poor (QF ≥ 0.3) correspondence. For lesions and TL, dose- and quality-volume histograms are mostly concordant: 69% of lesions had a QF within good/acceptable categories (40% good) and 65% of TL had a QF within good/acceptable categories (23% good). For NTL, the results showed mixed results with 48% QF within the poor concordance category. Finally, it was demonstrated how QVH analysis could be used to define the parameters that predict the significant differences between predictive and post-treatment dose distributions. CONCLUSION: It was shown that the use of the QVH is feasible in assessing the predictive value of 99mTc-MAA SPECT/CT dosimetry and in estimating the absorbed dose delivered to liver metastases from colorectal cancer via 90Y-microspheres. QVH analyses could be used in combination with DVH to enhance the predictive value of 99mTc-MAA SPECT/CT dosimetry and to assist personalized activity prescription.

6.
Radiother Oncol ; 126(2): 339-346, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28992962

RESUMEN

PURPOSE: To evaluate the short and long-term variability of breathing induced tumor motion. MATERIALS AND METHODS: 3D tumor motion of 19 lung and 18 liver lesions captured over the course of an SBRT treatment were evaluated and compared to the motion on 4D-CT. An implanted fiducial could be used for unambiguous motion information. Fast orthogonal fluoroscopy (FF) sequences, included in the treatment workflow, were used to evaluate motion during treatment. Several motion parameters were compared between different FF sequences from the same fraction to evaluate the intrafraction variability. To assess interfraction variability, amplitude and hysteresis were compared between fractions and with the 3D tumor motion registered by 4D-CT. Population based margins, necessary on top of the ITV to capture all motion variability, were calculated based on the motion captured during treatment. RESULTS: Baseline drift in the cranio-caudal (CC) or anterior-poster (AP) direction is significant (ie. >5 mm) for a large group of patients, in contrary to intrafraction amplitude and hysteresis variability. However, a correlation between intrafraction amplitude variability and mean motion amplitude was found (Pearson's correlation coefficient, r = 0.72, p < 10-4). Interfraction variability in amplitude is significant for 46% of all lesions. As such, 4D-CT accurately captures the motion during treatment for some fractions but not for all. Accounting for motion variability during treatment increases the PTV margins in all directions, most significantly in CC from 5 mm to 13.7 mm for lung and 8.0 mm for liver. CONCLUSION: Both short-term and day-to-day tumor motion variability can be significant, especially for lesions moving with amplitudes above 7 mm. Abandoning passive motion management strategies in favor of more active ones is advised.


Asunto(s)
Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/fisiopatología , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/fisiopatología , Planificación de la Radioterapia Asistida por Computador/métodos , Mecánica Respiratoria/fisiología , Marcadores Fiduciales , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Movimiento/fisiología , Radiocirugia
7.
Radiother Oncol ; 122(3): 347-351, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28117078

RESUMEN

BACKGROUND AND PURPOSE: Dynamic Wave Arc (DWA) is a system-specific noncoplanar arc technique that combines synchronized gantry-ring rotation with D-MLC optimization. This paper presents the clinical workflow, quality assurance program, and reports the geometric and dosimetric results of the first patient cohort treated with DWA. METHODS AND MATERIALS: The RayStation TPS was clinically integrated on the Vero SBRT platform for DWA treatments. The first 15 patients treated with DWA represent a broad range of treatment sites: breast boost, prostate, lung SBRT and bone metastases, which allowed us to explore the potentials and assess the limitations of the current DWA site-specific template solution. For the DWA verification a variety of QA equipment was used, from 3D diode array to an anthropomorphic end-to-end phantom. The geometric accuracy of each arc was verified with an independent orthogonal fluoroscopy method. RESULTS: The average beam-on delivery time was 3min, ranging from 1.22min to 8.82min. All patient QAs passed our institutional clinical criteria of gamma index. For both EBT3 film and Delta4 measurements, DWA planned versus delivered dose distributions presented an average agreement above 97%. An overall mean gantry-ring geometric deviation of -0.03°±0.46° and 0.18°±0.26° was obtained, respectively. CONCLUSION: For the first time, DWA has been translated into the clinic and used to treat various treatment sides. DWA has been successfully added to the noncoplanar rotational IMRT techniques arsenal, allowing additional flexibility in dose shaping while preserving dosimetrically robust delivery.


Asunto(s)
Neoplasias Óseas/radioterapia , Neoplasias de la Mama/radioterapia , Neoplasias Pulmonares/radioterapia , Neoplasias de la Próstata/radioterapia , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Estudios de Cohortes , Femenino , Fluoroscopía , Humanos , Masculino , Posicionamiento del Paciente/métodos , Garantía de la Calidad de Atención de Salud/métodos , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
8.
Radiother Oncol ; 119(3): 519-24, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27179921

RESUMEN

PURPOSE: To optimize the local control of stereotactic body radiotherapy (SBRT) using the Vero-SBRT system and respiratory motion management in patients with oligometastatic cancer. MATERIALS AND METHODS: Patients with five or less metastases were eligible. In metastases with significant motion, a fiducial was implanted for Vero dynamic tracking. For other metastases an internal target volume (ITV) was defined to encompass the respiratory tumor trajectory. A dose of 50Gy in 10 fractions was prescribed on the 80% isodose line. RESULTS: We treated 87 metastases in 44 patients, with colorectal cancer as the most common primary origin (65.9%). Metastatic sites were mainly lung (n=62) and liver (n=17). Twenty-seven metastases were treated with dynamic tracking, the remaining 60 using the ITV-concept. Three patients (7%) experienced grade ⩾3 toxicity. After a median follow-up of 12months, the overall one-year local control (LC) amounted to 89% (95% CI 77-95%), with corresponding values of 90% and 88% for the metastases irradiated with the ITV-approach and dynamic tracking, respectively. Median progression-free survival reached 6.5months, one-year overall survival 95%. CONCLUSIONS: SBRT with proper respiratory motion management resulted in a high LC and an acceptable toxicity profile in oligometastatic cancer patients.


Asunto(s)
Neoplasias Colorrectales/radioterapia , Radiocirugia/métodos , Adulto , Anciano , Neoplasias Colorrectales/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Metástasis de la Neoplasia , Órganos en Riesgo , Estudios Prospectivos , Radiocirugia/efectos adversos
9.
Radiat Oncol ; 11: 63, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27130434

RESUMEN

BACKGROUND: Dynamic Wave Arc (DWA) is a clinical approach designed to maximize the versatility of Vero SBRT system by synchronizing the gantry-ring noncoplanar movement with D-MLC optimization. The purpose of this study was to verify the delivery accuracy of DWA approach and to evaluate the potential dosimetric benefits. METHODS: DWA is an extended form of VMAT with a continuous varying ring position. The main difference in the optimization modules of VMAT and DWA is during the angular spacing, where the DWA algorithm does not consider the gantry spacing, but only the Euclidian norm of the ring and gantry angle. A preclinical version of RayStation v4.6 (RaySearch Laboratories, Sweden) was used to create patient specific wave arc trajectories for 31 patients with various anatomical tumor regions (prostate, oligometatstatic cases, centrally-located non-small cell lung cancer (NSCLC) and locally advanced pancreatic cancer-LAPC). DWA was benchmarked against the current clinical approaches and coplanar VMAT. Each plan was evaluated with regards to dose distribution, modulation complexity (MCS), monitor units and treatment time efficiency. The delivery accuracy was evaluated using a 2D diode array that takes in consideration the multi-dimensionality of DWA during dose reconstruction. RESULTS: In centrally-located NSCLC cases, DWA improved the low dose spillage with 20 %, while the target coverage was increased with 17 % compared to 3D CRT. The structures that significantly benefited from using DWA were proximal bronchus and esophagus, with the maximal dose being reduced by 17 % and 24 %, respectively. For prostate and LAPC, neither technique seemed clearly superior to the other; however, DWA reduced with more than 65 % of the delivery time over IMRT. A steeper dose gradient outside the target was observed for all treatment sites (p < 0.01) with DWA. Except the oligometastatic cases, where the DWA-MCSs indicate a higher modulation, both DWA and VMAT modalities provide plans of similar complexity. The average É£ (3 % /3 mm) passing rate for DWA plans was 99.2 ± 1 % (range from 96.8 to 100 %). CONCLUSIONS: DWA proven to be a fully functional treatment technique, allowing additional flexibility in dose shaping, while preserving dosimetrically robust delivery and treatment times comparable with coplanar VMAT.


Asunto(s)
Neoplasias/radioterapia , Neoplasias de la Próstata/radioterapia , Radiometría/métodos , Radiocirugia/métodos , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Benchmarking/métodos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Bases de Datos Factuales , Humanos , Neoplasias Pulmonares/radioterapia , Masculino , Metástasis de la Neoplasia , Órganos en Riesgo , Neoplasias Pancreáticas/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Factores de Tiempo
10.
Radiother Oncol ; 117(3): 487-90, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26344088

RESUMEN

A novel approach to dual-energy imaging for markerless tumor tracking was proposed consisting of sequential dual-energy fluoroscopy, omitting the need for fast-switching kV generators. The implementation of this approach on a clinical tumor tracking system and its efficacy is shown feasible through optimization of the imaging parameters.


Asunto(s)
Fluoroscopía/métodos , Neoplasias/diagnóstico , Algoritmos , Biomarcadores de Tumor/análisis , Estudios de Factibilidad , Humanos
11.
Int J Radiat Oncol Biol Phys ; 92(4): 754-61, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25962626

RESUMEN

PURPOSE: The purpose of this study was to define an independent verification method based on on-board orthogonal fluoroscopy to determine the geometric accuracy of synchronized gantry-ring (G/R) rotations during dynamic wave arc (DWA) delivery available on the Vero system. METHODS AND MATERIALS: A verification method for DWA was developed to calculate O-ring-gantry (G/R) positional information from ball-bearing positions retrieved from fluoroscopic images of a cubic phantom acquired during DWA delivery. Different noncoplanar trajectories were generated in order to investigate the influence of path complexity on delivery accuracy. The G/R positions detected from the fluoroscopy images (DetPositions) were benchmarked against the G/R angulations retrieved from the control points (CP) of the DWA RT plan and the DWA log files recorded by the treatment console during DWA delivery (LogActed). The G/R rotational accuracy was quantified as the mean absolute deviation ± standard deviation. The maximum G/R absolute deviation was calculated as the maximum 3-dimensional distance between the CP and the closest DetPositions. RESULTS: In the CP versus DetPositions comparison, an overall mean G/R deviation of 0.13°/0.16° ± 0.16°/0.16° was obtained, with a maximum G/R deviation of 0.6°/0.2°. For the LogActed versus DetPositions evaluation, the overall mean deviation was 0.08°/0.15° ± 0.10°/0.10° with a maximum G/R of 0.3°/0.4°. The largest decoupled deviations registered for gantry and ring were 0.6° and 0.4° respectively. No directional dependence was observed between clockwise and counterclockwise rotations. Doubling the dose resulted in a double number of detected points around each CP, and an angular deviation reduction in all cases. CONCLUSIONS: An independent geometric quality assurance approach was developed for DWA delivery verification and was successfully applied on diverse trajectories. Results showed that the Vero system is capable of following complex G/R trajectories with maximum deviations during DWA below 0.6°.


Asunto(s)
Fluoroscopía , Fantasmas de Imagen , Radioterapia Guiada por Imagen/instrumentación , Radioterapia de Intensidad Modulada/instrumentación , Rotación , Algoritmos , Calibración , Diagnóstico por Imagen , Diseño de Equipo , Humanos , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Sensibilidad y Especificidad
12.
Radiother Oncol ; 112(3): 352-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25443498

RESUMEN

BACKGROUND AND PURPOSE: For tumor tracking, a correlation model is used to estimate internal tumor position based on external surrogate motion. When patients experience an internal/external surrogate drift, an update of the correlation model is required to continue tumor tracking. In this study, the accuracy of the internal tumor position estimation for both the clinical available update at discrete points in time (rebuild) and an in-house developed non-clinical online update approach was investigated. METHODS: A dynamic phantom with superimposed baseline drifts and 14 SBRT patients, treated with real-time tumor tracking (RTTT) on the Vero system, were retrospectively simulated for three update scenarios, respectively no update, clinical rebuild and 0.5 Hz automated online update of the correlation model. By comparing the target positions based on 0.5 Hz verification X-ray images with the estimated internal tumor positions regarding all three update scenarios, 95th percentile modeling errors (ME95), incidences of full geometrical coverage of the CTV by a 5 mm extended PTV (P5mm) and population-based PTV margins were calculated. Further, the treatment time reduction was estimated when switching from the clinical rebuild approach to the online correlation model update. RESULTS: For dynamic phantom motion with baseline drifts up to 0.4 mm/min, a 0.5 Hz intra-fraction update showed a similar accuracy in terms of ME95 and P5 mm compared to clinical rebuild. For SBRT patients treated on Vero with RTTT, accuracy was improved by 0.5 Hz online update compared to the clinical rebuild protocol, yielding smaller PTV margins (from 3.2 mm to 2.7 mm), reduced ME95,3D (from 4.1 mm to 3.4 mm) and an increased 5th percentile P5 mm (from 90.7% to 96.1%) for the entire patient group. Further, 80% of treatment sessions were reduced in time with on average 5.5 ± 4.1(1 SD)min. CONCLUSION: With a fast (0.5 Hz) automated online update of the correlation model, an efficient RTTT workflow with improved geometrical accuracy was obtained.


Asunto(s)
Neoplasias Hepáticas/cirugía , Neoplasias Pulmonares/cirugía , Modelos Teóricos , Movimiento (Física) , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Femenino , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Fantasmas de Imagen , Radiografía , Reproducibilidad de los Resultados , Estudios Retrospectivos
13.
J Appl Clin Med Phys ; 15(1): 4437, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24423838

RESUMEN

The Vero SBRT system was benchmarked in a planning study against the Novalis SRS system for quality of delivered dose distributions to intracranial lesions and assessing the Vero system's capacity for SRS. A total of 27 patients with one brain lesion treated on the Novalis system, with 3 mm leaf width MLC and C-arm gantry, were replanned for Vero, with a 5 mm leaf width MLC mounted on an O-ring gantry allowing rotations around both the horizontal and vertical axis. The Novalis dynamic conformal arc (DCA) planning included vertex arcs, using 90° couch rotation. These vertex arcs cannot be reproduced with Vero due to the mechanical limitations of the O-ring gantry. Alternative class solutions were investigated for the Vero. Additionally, to distinguish between the effect of MLC leaf width and different beam arrangements on dose distributions, the Vero class solutions were also applied for Novalis. In addition, the added value of noncoplanar IMRT was investigated in this study. Quality of the achieved dose distributions was expressed in the conformity index (CI) and gradient index (GI), and compared using a paired Student's t-test with statistical significance for p-values ≤ 0.05. For lesions larger than 5 cm3, no statistical significant difference in conformity was observed between Vero and Novalis, but for smaller lesions, the dose distributions showed a significantly better conformity for the Novalis (ΔCI = 13.74%, p = 0.0002) mainly due to the smaller MLC leaf width. Using IMRT on Vero reduces this conformity difference to nonsignificant levels. The cutoff for achieving a GI around 3, characterizing a sharp dose falloff outside the target volume was 4 cm3 for Novalis and 7 cm3 for Vero using DCA technique. Using noncoplanar IMRT, this threshold was reduced to 3 cm3 for the Vero system. The smaller MLC and the presence of the vertex fields allow the Novalis system to better conform the dose around the lesion and to obtain steeper dose falloff outside the lesion. Comparable dosimetric characteristics can be achieved with Vero for lesions larger than 3 cm3 and using IMRT.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador , Radioterapia Conformacional/métodos , Algoritmos , Simulación por Computador , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética , Pronóstico , Radiocirugia/instrumentación , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA