Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 8881, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222030

RESUMEN

Decoders optimized offline to reconstruct intended movements from neural recordings sometimes fail to achieve optimal performance online when they are used in closed-loop as part of an intracortical brain-computer interface (iBCI). This is because typical decoder calibration routines do not model the emergent interactions between the decoder, the user, and the task parameters (e.g. target size). Here, we investigated the feasibility of simulating online performance to better guide decoder parameter selection and design. Three participants in the BrainGate2 pilot clinical trial controlled a computer cursor using a linear velocity decoder under different gain (speed scaling) and temporal smoothing parameters and acquired targets with different radii and distances. We show that a user-specific iBCI feedback control model can predict how performance changes under these different decoder and task parameters in held-out data. We also used the model to optimize a nonlinear speed scaling function for the decoder. When used online with two participants, it increased the dynamic range of decoded speeds and decreased the time taken to acquire targets (compared to an optimized standard decoder). These results suggest that it is feasible to simulate iBCI performance accurately enough to be useful for quantitative decoder optimization and design.


Asunto(s)
Biorretroalimentación Psicológica , Interfaces Cerebro-Computador , Modelos Neurológicos , Algoritmos , Calibración , Humanos , Desempeño Psicomotor
2.
Sci Rep ; 9(1): 5528, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30918269

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

3.
J Neurophysiol ; 121(4): 1428-1450, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30785814

RESUMEN

Intracortical brain-computer interfaces (BCIs) can enable individuals to control effectors, such as a computer cursor, by directly decoding the user's movement intentions from action potentials and local field potentials (LFPs) recorded within the motor cortex. However, the accuracy and complexity of effector control achieved with such "biomimetic" BCIs will depend on the degree to which the intended movements used to elicit control modulate the neural activity. In particular, channels that do not record distinguishable action potentials and only record LFP modulations may be of limited use for BCI control. In contrast, a biofeedback approach may surpass these limitations by letting the participants generate new control signals and learn strategies that improve the volitional control of signals used for effector control. Here, we show that, by using a biofeedback paradigm, three individuals with tetraplegia achieved volitional control of gamma LFPs (40-400 Hz) recorded by a single microelectrode implanted in the precentral gyrus. Control was improved over a pair of consecutive sessions up to 3 days apart. In all but one session, the channel used to achieve control lacked distinguishable action potentials. Our results indicate that biofeedback LFP-based BCIs may potentially contribute to the neural modulation necessary to obtain reliable and useful control of effectors. NEW & NOTEWORTHY Our study demonstrates that people with tetraplegia can volitionally control individual high-gamma local-field potential (LFP) channels recorded from the motor cortex, and that this control can be improved using biofeedback. Motor cortical LFP signals are thought to be both informative and stable intracortical signals and, thus, of importance for future brain-computer interfaces.


Asunto(s)
Interfaces Cerebro-Computador , Ritmo Gamma , Corteza Motora/fisiopatología , Cuadriplejía/fisiopatología , Adulto , Electrodos Implantados/efectos adversos , Electrodos Implantados/normas , Retroalimentación Fisiológica , Humanos , Movimiento , Cuadriplejía/rehabilitación
4.
Sci Rep ; 8(1): 16357, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30397281

RESUMEN

Brain-machine interfaces (BMIs) that decode movement intentions should ignore neural modulation sources distinct from the intended command. However, neurophysiology and control theory suggest that motor cortex reflects the motor effector's position, which could be a nuisance variable. We investigated motor cortical correlates of BMI cursor position with or without concurrent arm movement. We show in two monkeys that subtracting away estimated neural correlates of position improves online BMI performance only if the animals were allowed to move their arm. To understand why, we compared the neural variance attributable to cursor position when the same task was performed using arm reaching, versus arms-restrained BMI use. Firing rates correlated with both BMI cursor and hand positions, but hand positional effects were greater. To examine whether BMI position influences decoding in people with paralysis, we analyzed data from two intracortical BMI clinical trial participants and performed an online decoder comparison in one participant. We found only small motor cortical correlates, which did not affect performance. These results suggest that arm movement and proprioception are the major contributors to position-related motor cortical correlates. Cursor position visual feedback is therefore unlikely to affect the performance of BMI-driven prosthetic systems being developed for people with paralysis.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Motora/fisiología , Animales , Brazo/fisiología , Humanos , Macaca mulatta , Masculino , Corteza Motora/fisiopatología , Movimiento , Parálisis/fisiopatología , Factores de Tiempo
5.
PLoS One ; 13(11): e0204566, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30462658

RESUMEN

General-purpose computers have become ubiquitous and important for everyday life, but they are difficult for people with paralysis to use. Specialized software and personalized input devices can improve access, but often provide only limited functionality. In this study, three research participants with tetraplegia who had multielectrode arrays implanted in motor cortex as part of the BrainGate2 clinical trial used an intracortical brain-computer interface (iBCI) to control an unmodified commercial tablet computer. Neural activity was decoded in real time as a point-and-click wireless Bluetooth mouse, allowing participants to use common and recreational applications (web browsing, email, chatting, playing music on a piano application, sending text messages, etc.). Two of the participants also used the iBCI to "chat" with each other in real time. This study demonstrates, for the first time, high-performance iBCI control of an unmodified, commercially available, general-purpose mobile computing device by people with tetraplegia.


Asunto(s)
Ondas Encefálicas , Interfaces Cerebro-Computador , Computadoras de Mano , Cuadriplejía , Programas Informáticos , Adulto , Electrodos , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
IEEE Trans Biomed Eng ; 65(8): 1771-1784, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29989931

RESUMEN

OBJECTIVE: Brain-computer interfaces (BCIs) aim to help people with impaired movement ability by directly translating their movement intentions into command signals for assistive technologies. Despite large performance improvements over the last two decades, BCI systems still make errors that need to be corrected manually by the user. This decreases system performance and is also frustrating for the user. The deleterious effects of errors could be mitigated if the system automatically detected when the user perceives that an error was made and automatically intervened with a corrective action; thus, sparing users from having to make the correction themselves. Our previous preclinical work with monkeys demonstrated that task-outcome correlates exist in motor cortical spiking activity and can be utilized to improve BCI performance. Here, we asked if these signals also exist in the human hand area of motor cortex, and whether they can be decoded with high accuracy. METHODS: We analyzed posthoc the intracortical neural activity of two BrainGate2 clinical trial participants who were neurally controlling a computer cursor to perform a grid target selection task and a keyboard-typing task. RESULTS: Our key findings are that: 1) there exists a putative outcome error signal reflected in both the action potentials and local field potentials of the human hand area of motor cortex, and 2) target selection outcomes can be classified with high accuracy (70-85%) of errors successfully detected with minimal (0-3%) misclassifications of success trials, based on neural activity alone. SIGNIFICANCE: These offline results suggest that it will be possible to improve the performance of clinical intracortical BCIs by incorporating a real-time error detect-and-undo system alongside the decoding of movement intention.


Asunto(s)
Interfaces Cerebro-Computador , Electrodos Implantados , Corteza Motora/fisiología , Dispositivos de Autoayuda , Esclerosis Amiotrófica Lateral/rehabilitación , Electroencefalografía , Femenino , Mano/fisiología , Humanos , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Traumatismos de la Médula Espinal/rehabilitación , Análisis y Desempeño de Tareas
7.
IEEE Trans Biomed Eng ; 65(9): 2066-2078, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29989927

RESUMEN

OBJECTIVE: Recent reports indicate that making better assumptions about the user's intended movement can improve the accuracy of decoder calibration for intracortical brain-computer interfaces. Several methods now exist for estimating user intent, including an optimal feedback control model, a piecewise-linear feedback control model, ReFIT, and other heuristics. Which of these methods yields the best decoding performance? METHODS: Using data from the BrainGate2 pilot clinical trial, we measured how a steady-state velocity Kalman filter decoder was affected by the choice of intention estimation method. We examined three separate components of the Kalman filter: dimensionality reduction, temporal smoothing, and output gain (speed scaling). RESULTS: The decoder's dimensionality reduction properties were largely unaffected by the intention estimation method. Decoded velocity vectors differed by <5% in terms of angular error and speed vs. target distance curves across methods. In contrast, the smoothing and gain properties of the decoder were greatly affected (> 50% difference in average values). Since the optimal gain and smoothing properties are task-specific (e.g. lower gains are better for smaller targets but worse for larger targets), no one method was better for all tasks. CONCLUSION: Our results show that, when gain and smoothing differences are accounted for, current intention estimation methods yield nearly equivalent decoders and that simple models of user intent, such as a position error vector (target position minus cursor position), perform comparably to more elaborate models. Our results also highlight that simple differences in gain and smoothing properties have a large effect on online performance and can confound decoder comparisons.


Asunto(s)
Interfaces Cerebro-Computador , Intención , Corteza Motora/fisiología , Procesamiento de Señales Asistido por Computador , Algoritmos , Calibración , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Movimiento/fisiología , Cuadriplejía/rehabilitación
8.
J Neurophysiol ; 120(1): 343-360, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29694279

RESUMEN

Restoring communication for people with locked-in syndrome remains a challenging clinical problem without a reliable solution. Recent studies have shown that people with paralysis can use brain-computer interfaces (BCIs) based on intracortical spiking activity to efficiently type messages. However, due to neuronal signal instability, most intracortical BCIs have required frequent calibration and continuous assistance of skilled engineers to maintain performance. Here, an individual with locked-in syndrome due to brain stem stroke and an individual with tetraplegia secondary to amyotrophic lateral sclerosis (ALS) used a simple communication BCI based on intracortical local field potentials (LFPs) for 76 and 138 days, respectively, without recalibration and without significant loss of performance. BCI spelling rates of 3.07 and 6.88 correct characters/minute allowed the participants to type messages and write emails. Our results indicate that people with locked-in syndrome could soon use a slow but reliable LFP-based BCI for everyday communication without ongoing intervention from a technician or caregiver. NEW & NOTEWORTHY This study demonstrates, for the first time, stable repeated use of an intracortical brain-computer interface by people with tetraplegia over up to four and a half months. The approach uses local field potentials (LFPs), signals that may be more stable than neuronal action potentials, to decode participants' commands. Throughout the several months of evaluation, the decoder remained unchanged; thus no technical interventions were required to maintain consistent brain-computer interface operation.


Asunto(s)
Esclerosis Amiotrófica Lateral/rehabilitación , Interfaces Cerebro-Computador , Comunicación , Cuadriplejía/rehabilitación , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/fisiopatología , Tronco Encefálico/fisiopatología , Potenciales Evocados , Humanos , Cuadriplejía/fisiopatología , Accidente Cerebrovascular/etiología , Rehabilitación de Accidente Cerebrovascular/instrumentación
9.
J Neural Eng ; 15(2): 026007, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29363625

RESUMEN

OBJECTIVE: Brain-computer interfaces (BCIs) can enable individuals with tetraplegia to communicate and control external devices. Though much progress has been made in improving the speed and robustness of neural control provided by intracortical BCIs, little research has been devoted to minimizing the amount of time spent on decoder calibration. APPROACH: We investigated the amount of time users needed to calibrate decoders and achieve performance saturation using two markedly different decoding algorithms: the steady-state Kalman filter, and a novel technique using Gaussian process regression (GP-DKF). MAIN RESULTS: Three people with tetraplegia gained rapid closed-loop neural cursor control and peak, plateaued decoder performance within 3 min of initializing calibration. We also show that a BCI-naïve user (T5) was able to rapidly attain closed-loop neural cursor control with the GP-DKF using self-selected movement imagery on his first-ever day of closed-loop BCI use, acquiring a target 37 s after initiating calibration. SIGNIFICANCE: These results demonstrate the potential for an intracortical BCI to be used immediately after deployment by people with paralysis, without the need for user learning or extensive system calibration.


Asunto(s)
Interfaces Cerebro-Computador , Neuroestimuladores Implantables , Corteza Motora/fisiología , Cuadriplejía/terapia , Adulto , Interfaces Cerebro-Computador/tendencias , Calibración , Femenino , Humanos , Neuroestimuladores Implantables/tendencias , Masculino , Persona de Mediana Edad , Cuadriplejía/fisiopatología , Factores de Tiempo
10.
J Neural Eng ; 14(2): 026010, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28177925

RESUMEN

OBJECTIVE: Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts' law: [Formula: see text] (where MT is movement time, D is target distance, R is target radius, and [Formula: see text] are parameters). Fitts' law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio [Formula: see text]) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to [Formula: see text]). APPROACH: Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts' law. MAIN RESULTS: We found that movement times were better described by the equation [Formula: see text], which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the [Formula: see text] ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user's motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. SIGNIFICANCE: The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts' law-like relationship to iBCI movements may require non-linear decoding strategies.


Asunto(s)
Artefactos , Interfaces Cerebro-Computador , Electroencefalografía/métodos , Potenciales Evocados , Modelos Neurológicos , Movimiento , Desempeño Psicomotor , Simulación por Computador , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Relación Señal-Ruido
11.
Elife ; 62017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28220753

RESUMEN

Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O'Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4-4.2) and information throughput (by a factor of 2.2-4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function.Clinical Trial No: NCT00912041.


Asunto(s)
Interfaces Cerebro-Computador , Comunicación , Parálisis , Humanos , Resultado del Tratamiento
12.
J Neural Eng ; 14(1): 016001, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27900953

RESUMEN

OBJECTIVE: When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. APPROACH: We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. MAIN RESULTS: We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. SIGNIFICANCE: Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.


Asunto(s)
Biorretroalimentación Psicológica/fisiología , Encéfalo/fisiología , Retroalimentación Fisiológica/fisiología , Imaginación/fisiología , Modelos Neurológicos , Movimiento/fisiología , Análisis y Desempeño de Tareas , Biorretroalimentación Psicológica/métodos , Simulación por Computador , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto
13.
Sci Transl Med ; 7(313): 313ra179, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26560357

RESUMEN

Brain-computer interfaces (BCIs) promise to restore independence for people with severe motor disabilities by translating decoded neural activity directly into the control of a computer. However, recorded neural signals are not stationary (that is, can change over time), degrading the quality of decoding. Requiring users to pause what they are doing whenever signals change to perform decoder recalibration routines is time-consuming and impractical for everyday use of BCIs. We demonstrate that signal nonstationarity in an intracortical BCI can be mitigated automatically in software, enabling long periods (hours to days) of self-paced point-and-click typing by people with tetraplegia, without degradation in neural control. Three key innovations were included in our approach: tracking the statistics of the neural activity during self-timed pauses in neural control, velocity bias correction during neural control, and periodically recalibrating the decoder using data acquired during typing by mapping neural activity to movement intentions that are inferred retrospectively based on the user's self-selected targets. These methods, which can be extended to a variety of neurally controlled applications, advance the potential for intracortical BCIs to help restore independent communication and assistive device control for people with paralysis.


Asunto(s)
Interfaces Cerebro-Computador , Cuadriplejía/fisiopatología , Cuadriplejía/rehabilitación , Dispositivos de Autoayuda , Esclerosis Amiotrófica Lateral/complicaciones , Calibración , Femenino , Humanos , Masculino , Corteza Motora/fisiopatología , Accidente Cerebrovascular/complicaciones
14.
Nat Med ; 21(10): 1142-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26413781

RESUMEN

Neural prostheses have the potential to improve the quality of life of individuals with paralysis by directly mapping neural activity to limb- and computer-control signals. We translated a neural prosthetic system previously developed in animal model studies for use by two individuals with amyotrophic lateral sclerosis who had intracortical microelectrode arrays placed in motor cortex. Measured more than 1 year after implant, the neural cursor-control system showed the highest published performance achieved by a person to date, more than double that of previous pilot clinical trial participants.


Asunto(s)
Prótesis Neurales , Parálisis/terapia , Investigación Biomédica Traslacional , Humanos , Microelectrodos , Calidad de Vida
15.
J Neural Eng ; 12(4): 043002, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26169880

RESUMEN

OBJECTIVE: One of the main goals of brain-machine interface (BMI) research is to restore function to people with paralysis. Currently, multiple BMI design features are being investigated, based on various input modalities (externally applied and surgically implantable sensors) and output modalities (e.g. control of computer systems, prosthetic arms, and functional electrical stimulation systems). While these technologies may eventually provide some level of benefit, they each carry associated burdens for end-users. We sought to assess the attitudes of people with paralysis toward using various technologies to achieve particular benefits, given the burdens currently associated with the use of each system. APPROACH: We designed and distributed a technology survey to determine the level of benefit necessary for people with tetraplegia due to spinal cord injury to consider using different technologies, given the burdens currently associated with them. The survey queried user preferences for 8 BMI technologies including electroencephalography, electrocorticography, and intracortical microelectrode arrays, as well as a commercially available eye tracking system for comparison. Participants used a 5-point scale to rate their likelihood to adopt these technologies for 13 potential control capabilities. MAIN RESULTS: Survey respondents were most likely to adopt BMI technology to restore some of their natural upper extremity function, including restoration of hand grasp and/or some degree of natural arm movement. High speed typing and control of a fast robot arm were also of interest to this population. Surgically implanted wireless technologies were twice as 'likely' to be adopted as their wired equivalents. SIGNIFICANCE: Assessing end-user preferences is an essential prerequisite to the design and implementation of any assistive technology. The results of this survey suggest that people with tetraplegia would adopt an unobtrusive, autonomous BMI system for both restoration of upper extremity function and control of external devices such as communication interfaces.


Asunto(s)
Equipos de Comunicación para Personas con Discapacidad/estadística & datos numéricos , Electroencefalografía/estadística & datos numéricos , Evaluación de Necesidades , Prioridad del Paciente/estadística & datos numéricos , Cuadriplejía/rehabilitación , Robótica/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Interfaces Cerebro-Computador , Equipos de Comunicación para Personas con Discapacidad/psicología , Electroencefalografía/psicología , Femenino , Encuestas de Atención de la Salud , Humanos , Masculino , Persona de Mediana Edad , Prioridad del Paciente/psicología , Cuadriplejía/epidemiología , Cuadriplejía/psicología , Tecnología , Estados Unidos/epidemiología , Adulto Joven
16.
Elife ; 4: e07436, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26099302

RESUMEN

The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Corteza Motora/fisiología , Movimiento , Vías Nerviosas/fisiología , Neuronas/fisiología , Humanos , Modelos Neurológicos
17.
J Neural Eng ; 10(2): 026002, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23369953

RESUMEN

OBJECTIVE: Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system. APPROACH: We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. MAIN RESULTS: Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. SIGNIFICANCE: These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training, and characterization of non-stationarities such that ECoG could be a viable signal source for grasp control for amputees or individuals with paralysis.


Asunto(s)
Electroencefalografía , Mano/fisiología , Corteza Motora/fisiología , Postura/fisiología , Corteza Somatosensorial/fisiología , Brazo/fisiología , Sistemas de Computación , Electrodos , Dedos/fisiología , Humanos , Contracción Isométrica/fisiología , Movimiento/fisiología , Sistemas en Línea , Prótesis e Implantes , Diseño de Prótesis , Reproducibilidad de los Resultados , Descanso , Convulsiones/diagnóstico , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA