Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(35): 24550-24557, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39167712

RESUMEN

Nanomechanical resonators can serve as ultrasensitive, miniaturized force probes. While vertical structures such as nanopillars are ideal for this purpose, transducing their motion is challenging. Pillar-based photonic crystals (PhCs) offer a potential solution by integrating optical transduction within the pillars. However, achieving high-quality PhCs is hindered by inefficient vertical light confinement. Here, we present a full-silicon photonic crystal cavity based on nanopillars as a platform for applications in force sensing and biosensing areas. Its unit cell consists of a silicon pillar with a larger diameter at its top portion than at the bottom, which allows vertical light confinement and an energy band gap in the near-infrared range for transverse-magnetic polarization. We experimentally demonstrate optical cavities with Q factors exceeding 103, constructed by inserting a defect within a periodic arrangement of this type of pillars. Each nanopillar naturally behaves as a nanomechanical cantilever, making the fabricated geometries excellent optomechanical (OM) photonic crystal cavities in which the mechanical motion of each nanopillar composing the cavity can be optically transduced. These geometries display enhanced mechanical properties, cost-effectiveness, integration possibilities, and scalability. They also present an alternative in front of the widely used suspended Si beam OM cavities made on silicon-on-insulator substrates.

2.
ACS Omega ; 8(8): 7714-7721, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36873038

RESUMEN

In the future, rapid electrical characterization of cells with impedance flow cytometry promises to be a fast and accurate method for the evaluation of cell properties. In this paper, we investigate how the conductivity of the suspending medium along with the heat exposure time affects the viability classification of heat-treated E. coli. Using a theoretical model, we show that perforation of the bacteria membrane during heat exposure changes the impedance of the bacterial cell from effectively less conducting than the suspension medium to effectively more conducting. Consequently, this results in a shift in the differential argument of the complex electrical current that can be measured with impedance flow cytometry. We observe this shift experimentally through measurements on E. coli samples with varying medium conductivity and heat exposure times. We show that increased exposure time and lower medium conductivity results in improved classification between untreated and heat-treated bacteria. The best classification was achieved with a medium conductivity of 0.045 S/m after 30 min of heat exposure.

3.
Sensors (Basel) ; 20(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172055

RESUMEN

Bacteria detection, counting and analysis is of great importance in several fields. When viability plays a major role in decision making, the counting of colony-forming units grown on agar plates remains the gold standard. However, because plate counts depend on the growth of the bacteria, it is a slow procedure and only works with culturable species. Impedance flow cytometry (IFC) is a promising technology for particle detection, counting and characterization. It relies on the perturbation of an electric field by particles flowing through a microfluidic channel. The perturbation is directly related to the electrical properties of the particles, and therefore provides information about their composition and structure. In this work we investigate whether IFC can be used to differentiate viable cells from inactivated cells. Our findings demonstrate that the specific viability state of the bacteria has to be considered, but that with proper characterization thresholds, IFC can be used to classify bacterial viability states. By using three different inactivation methods-ethanol, heat and autoclavation-we have been able to show that the impedance response of Escherichia coli depends on its viability state, but that the specific response depends on the inactivation method. With these findings we expect to be able to optimize IFC for more reliable bacteria detection and counting in the future.


Asunto(s)
Escherichia coli , Citometría de Flujo , Impedancia Eléctrica
4.
Sensors (Basel) ; 18(10)2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30336557

RESUMEN

Monitoring of bacteria concentrations is of great importance in drinking water management. Continuous real-time monitoring enables better microbiological control of the water and helps prevent contaminated water from reaching the households. We have developed a microfluidic sensor with the potential to accurately assess bacteria levels in drinking water in real-time. Multi frequency electrical impedance spectroscopy is used to monitor a liquid sample, while it is continuously passed through the sensor. We investigate three aspects of this sensor: First we show that the sensor is able to differentiate Escherichia coli (Gram-negative) bacteria from solid particles (polystyrene beads) based on an electrical response in the high frequency phase and individually enumerate the two samples. Next, we demonstrate the sensor's ability to measure the bacteria concentration by comparing the results to those obtained by the traditional CFU counting method. Last, we show the sensor's potential to distinguish between different bacteria types by detecting different signatures for S. aureus and E. coli mixed in the same sample. Our investigations show that the sensor has the potential to be extremely effective at detecting sudden bacterial contaminations found in drinking water, and eventually also identify them.


Asunto(s)
Técnicas Bacteriológicas/métodos , Agua Potable/microbiología , Citometría de Flujo/métodos , Técnicas Bacteriológicas/instrumentación , Impedancia Eléctrica , Diseño de Equipo , Escherichia coli , Citometría de Flujo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Staphylococcus aureus , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA