Your browser doesn't support javascript.
loading
Strong Cavity-Optomechanical Transduction of Nanopillar Motion.
Jaramillo-Fernandez, Juliana; Poblet, Martin; Alonso-Tomás, David; Bertelsen, Christian Vinther; López-Aymerich, Elena; Arenas-Ortega, Daniel; Svendsen, Winnie Edith; Capuj, Néstor; Romano-Rodríguez, Albert; Navarro-Urrios, Daniel.
Afiliación
  • Jaramillo-Fernandez J; Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028 Barcelona, Spain.
  • Poblet M; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
  • Alonso-Tomás D; Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028 Barcelona, Spain.
  • Bertelsen CV; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
  • López-Aymerich E; Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028 Barcelona, Spain.
  • Arenas-Ortega D; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
  • Svendsen WE; DTU Bioengineering, Danmarks Tekniske Universitet (DTU), 2800 Kgs. Lyngby, Denmark.
  • Capuj N; DTU Nanolab, Danmarks Tekniske Universitet (DTU), 2800 Kgs. Lyngby, Denmark.
  • Romano-Rodríguez A; Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028 Barcelona, Spain.
  • Navarro-Urrios D; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
ACS Nano ; 18(35): 24550-24557, 2024 Sep 03.
Article en En | MEDLINE | ID: mdl-39167712
ABSTRACT
Nanomechanical resonators can serve as ultrasensitive, miniaturized force probes. While vertical structures such as nanopillars are ideal for this purpose, transducing their motion is challenging. Pillar-based photonic crystals (PhCs) offer a potential solution by integrating optical transduction within the pillars. However, achieving high-quality PhCs is hindered by inefficient vertical light confinement. Here, we present a full-silicon photonic crystal cavity based on nanopillars as a platform for applications in force sensing and biosensing areas. Its unit cell consists of a silicon pillar with a larger diameter at its top portion than at the bottom, which allows vertical light confinement and an energy band gap in the near-infrared range for transverse-magnetic polarization. We experimentally demonstrate optical cavities with Q factors exceeding 103, constructed by inserting a defect within a periodic arrangement of this type of pillars. Each nanopillar naturally behaves as a nanomechanical cantilever, making the fabricated geometries excellent optomechanical (OM) photonic crystal cavities in which the mechanical motion of each nanopillar composing the cavity can be optically transduced. These geometries display enhanced mechanical properties, cost-effectiveness, integration possibilities, and scalability. They also present an alternative in front of the widely used suspended Si beam OM cavities made on silicon-on-insulator substrates.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Estados Unidos